Browsing by Author "Acuna, Edouard"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemPhytostabilization of trace elements and 13C isotope composition of Atriplex atacamensis Phil. cultivated in mine tailings treated with organic amendments(2023) Castillo, Benjamin; Acuna, Edouard; Sanchez, Andrea; Cornejo, Pablo; Salazar, Osvaldo; Tapia, YasnaMining generates large quantities of mineral processing wastes that are typically stored in mine tailings (MT) ponds. Long-term exposure of the surrounding areas to the material from the tailings ponds has been reported to have adverse effects on both human health and the environment. The purpose of this study was to evaluate the ability of Atriplex atacamensis Phil. to phytostabilize metals (Cu, Fe, Mn, and Zn) and sulfur (S) when grown directly on mine tailings with and without compost (C) and humic substance (HS). The stress status of A. atacamensis Phil. was also evaluated through the C-13 isotopic composition of bulk leaves. A 120-day greenhouse experiment was conducted and three treatments were evaluated: (i) MT without any amendments (control), (ii) MT + C (dose: 89 ton ha(-1)), and (iii) MT + HS (0.72 ton ha(-1)). Mine tailings material exhibited low salinity, alkaline pH, high extractable S-SO4 concentrations, and low fertility; total Fe, Mn, and Zn concentrations were within the reference range for mine tailings, but total Cu concentrations were high at 1860 +/- 236 mg kg(-1). The HS had higher pH, EC, CEC, and available concentrations of N, P, and K than compost, while S-SO4 concentrations were similar in both amendments. C-13 NMR analysis showed that the HS contained more alkyl, aromatic, and phenolic groups, while the compost was dominated by O-alkyl and carboxyl groups. At the end of the experiment, the MT + C treatment achieved a significant decrease in Cu, Fe, and Mn concentrations in the roots and aboveground parts of A. atacamensis Phil. and an increase in Zn values in both tissues. Both amendments increased the sulfur content in the aboveground parts, while metal concentrations under the HS treatment proved similar to control. Furthermore, the delta(CV)-C-13-PDB values obtained in this study indicate that the organic amendments did not cause additional physiological stress to the plants compared to the MT treatment. Overall, A. atacamensis Phil. was shown to have the ability to phytostabilize metals and sulfur, making it a potential candidate species for in situ evaluation of the phytostabilization process on mine tailings.
- ItemSeasonal pattern of root growth in relation to shoot phenology and soil temperature in sweet cherry trees (Prunus avium): A preliminary study in central Chile(2012) Bonomelli, Claudia; Bonilla, Carlos; Acuna, Edouard; Artacho, PamelaC. Bonomelli, C. Bonilla, E. Acuna, and P. Artacho. 2012. Seasonal pattern of root growth in relation to shoot phenology and soil temperature in sweet cherry trees (Prunus avium): A preliminary study in central Chile. Cien. Inv. Agr. 39(1): 127-136. The period between flowering and harvest in the sweet cherry (Prunus avium L.) is shorter than most fruit trees; thus, competition for assimilate and nutrients occurs early in the season. To properly supply water and nutrients during this critical period, optimal growth and root development are necessary. To characterize the root growth pattern of cherry trees in relation to shoot growth and phenology, a study was conducted on a 'Bing' cherry orchard on Gisela 6 rootstock at fourth leaf, located in central Chile (34 degrees 70 degrees S, 70 degrees 43' W). During the 2009-2010 season, the shoot length and fruit diameter were measured on eight trees, and the root length was quantified by installing rhizotrons on two trees. Additionally, a two-tone (black/white) plastic cover was placed in the row over one tree with a rhizotron to analyze the effects of the plastic cover on soil temperature and root growth. The results showed three peaks of root growth during the season. The first peak occurred 43 days after full bloom (DAFB), corresponding to the phenological stages of the fruit turning from green to straw color. This peak occurred at 326 accumulated degree days (ADD) in the soil and 212 ADD in the air. The second peak was observed after harvest at 97 DAFB, when the shoot growth had stopped, and the soil and air had accumulated 932 and 692 degree days, respectively. The third and last peak occurred at 167 DAFB, with 1887 ADD in the soil and 1361 ADD in the air. The plastic cover increased the average soil temperature by approximately 1 degrees C, thereby increasing the ADD by 105.2 units during the study period. However, this increase was not enough to affect the root growth pattern.