Browsing by Author "Acuna, Pablo"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCharting the landscape of interpretation, theory rivalry, and underdetermination in quantum mechanics(2021) Acuna, PabloWhen we speak about different interpretations of quantum mechanics it is suggested that there is one single quantum theory that can be interpreted in different ways. However, after an explicit characterization of what it is to interpret quantum mechanics, the right diagnosis is that we have a case of predictively equivalent rival theories. I extract some lessons regarding the resulting underdetermination of theory choice. Issues about theoretical identity, theoretical and methodological pluralism, and the prospects for a realist stance towards quantum theory can be properly addressed once we recognize that interpretations of quantum mechanics are rival theories.
- ItemModel Predictive Control in Multilevel Inverters Part I: Basic Strategy and Performance Improvement(2024) Garcia, Cristian; Mora, Andres; Norambuena, Margarita; Rodriguez, Jose; Aly, Mokhtar; Carnielutti, Fernanda; Pereda, Javier; Acuna, Pablo; Aguilera, Ricardo; Tarisciotti, LucaMultilevel inverters (MLIs) have lately become important due to their extended application to electrical transmission and distribution systems. At the same time, the control and modulation of MLIs are especially challenging due to the high number of switching states, many of them redundant in terms of output voltage generation, and their nonlinear characteristics. In order to ease their implementation in real environment, model predictive control (MPC) is often considered, where the main control targets are: 1) to generate a the desired output current and 2) to keep the internal converter capacitor voltages at their reference value. However, a major issue with the implementation of MPC in MLIs is that the number of calculations to be done online increases dramatically with the number of levels, making it almost impossible to apply MPC in some practical cases. For these reasons, one of the main research trend in MPC for MLIs is to provide an algorithm which can reduce the computational burden necessary to operate the control. The article proposes a review of such control techniques. Starting from the basic MPC implementation and using a flying capacitor converter as an example the article review the basic strategies to avoid calculating the weighting factor in the cost function, simplifying the implementation. Also, methods to reduce the number of calculations necessary to implement MPC are shown and applied to cascaded H-bridge converters. These techniques allow to keep an high load current quality while reducing more than 95% in the number of calculations necessary to implement the control. Finally, other operation improvements of MPC are also included, such as fixed switching frequency operation and multistep MPC, reaching an important performance improvement compared to the basic MPC strategy.
- ItemMust hidden variables theories be contextual? Kochen & Specker meet von Neumann and Gleason(2021) Acuna, PabloIt is a widespread belief that the Kochen-Specker theorem imposes a contextuality constraint on the ontology of beables in quantum hidden variables theories. On the other hand, after Bell's influential critique, the importance of von Neumann's wrongly called 'impossibility proof' has been severely questioned. However, Max Jammer, Jeffrey Bub and Dennis Dieks have proposed insightful reassessments of von Neumann's theorem: what it really shows is that hidden variables theories cannot represent their beables by means of Hermitian operators in Hilbert space. Hereby I show that i) the very same constraint can be derived from Gleason's theorem, and that ii) if we consider the import of von Neumann's and Gleason's theorems, the relevance of the Kochen-Specker theorem for hidden variables theories gets substantially weakened: it does not force them to be contextual in any interesting sense of the term.
- Itemvon Neumann's Theorem Revisited(2021) Acuna, PabloAccording to a popular narrative, in 1932 von Neumann introduced a theorem that intended to be a proof of the impossibility of hidden variables in quantum mechanics. However, the narrative goes, Bell later spotted a flaw that allegedly shows its irrelevance. Bell's widely accepted criticism has been challenged by Bub and Dieks: they claim that the proof shows that viable hidden variables theories cannot be theories in Hilbert space. Bub's and Dieks' reassessment has been in turn challenged by Mermin and Schack. Hereby I critically assess their reply, with the aim of bringing further clarification concerning the meaning, scope and relevance of von Neumann's theorem. I show that despite Mermin and Schack's response, Bub's and Dieks' reassessment is quite correct, and that this reading gets strongly reinforced when we carefully consider the connection between von Neumann's proof and Gleason's theorem.