Browsing by Author "Alloway, Brent V."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemRefinement of the tephrostratigraphy straddling the northern Patagonian Andes (40–41°S): new tephra markers, reconciling different archives and ascertaining the timing of piedmont deglaciation(2022) Alloway, Brent V.; Pearce, Nicholas J.G.; Moreno, Patricio I.; Villarrosa, Gustavo; Jara, Ignacio A.; Henríquez, Carla A.; Sagredo T., Esteban; Ryan, Matthew T.; Outes, ValeriaWe describe the stratigraphy, age, geochemistry and correlation of tephra from west to east across the northern Patagonian Andes (c. 40–41°S) with a view to further refining the eruptive history of this region back to the onset of the Last Glacial Termination (~18 cal. ka). Eastwards across the Andes, rhyodacite to rhyolitic tephra markers of dominantly Puyehue-Cordón Caulle source are persistently recognised and provide a stratigraphic context for more numerously erupted intervening tephra of basalt to basaltic–andesite composition. Tephra from distal eruptive centres are also recognised. West of the Andean Cordillera, organic-rich cores from a small closed lake basin (Lago Pichilafquén) reveal an exceptional high-resolution record of lowland vegetation–climate change and eruptive activity spanning the last 15 400 years. Three new rhyodacite tephra (BT6-T1, -T2 and -T4) identified near the base of the Pichilafquén record, spanning 13.2 to 13.9 cal. ka bp, can be geochemically matched with correlatives in basal andic soil sequences closely overlying regolith and/or basement rock. The repetitiveness of this tephrostratigraphy across this Andean transect suggests near-synchronous tephra accretion and onset of up-building soil formation under more stable (revegetating) ground-surface conditions following rapid piedmont deglaciation on both sides of the Cordillera by at least ~14 cal. ka bp.