Browsing by Author "Anegon, Ignacio"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemCarbon monoxide exposure improves immune function in lupus-prone mice(2013) Mackern Oberti, Juan Pablo; Llanos Muñoz, Carolina; Carreño Márquez, Leandro Javier; Riquelme, Sebastián A.; Jacobelli, Sergio H.; Anegon, Ignacio; Kalergis Parra, Alexis Mikes
- ItemCarbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells(2015) Riquelme, Sebastián A.; Pogu, Julien; Anegon, Ignacio; Bueno Ramírez, Susan; Kalergis Parra, Alexis Mikes
- ItemFederation of Clinical Immunology Societies Goes South 2021: advanced course on molecular and cellular translational immunology(2022) Diethelm-Varela, Benjamin; Reyes, Antonia; Rosenstein, Yvonne; Kalil, Jorge; Hill, Marcelo; Docena, Guillermo; Anegon, Ignacio; Gonzalez, Pablo A.; Kalergis, Alexis M.The Federation of Clinical Immunology Societies (FOCIS) regularly organizes scientific meetings to foster advances in immunology. A new event of this type is FOCIS Goes South, a course and workshop organized by FOCIS Centers of Excellence (FCEs) from across Latin America, which consists of a course on advanced immunology, a flow cytometry workshop and seminars on cutting-edge research in autoimmunity, tolerance, cancer, infectious diseases and vaccines. Due to the COVID-19 pandemic, the second version of FOCIS Goes South, hosted by the Millennium Institute on Immunology and Immunotherapy in Chile, took place virtually from 15 to 18 November 2021, with more than 950 registered participants. The present article summarizes the key findings and insights discussed at FOCIS Goes South 2021.
- ItemHaem oxygenase 1 expression is altered in monocytes from patients with systemic lupus erythematosus(WILEY, 2012) Herrada, Andres A.; Llanos, Carolina; Mackern Oberti, Juan P.; Carreno, Leandro J.; Henriquez, Carla; Gomez, Roberto S.; Gutierrez, Miguel A.; Anegon, Ignacio; Jacobelli, Sergio H.; Kalergis, Alexis M.Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple functional alterations affecting immune cells, such as B cells, T cells, dendritic cells (DCs) and monocytes. During SLE, the immunogenicity of monocytes and DCs is significantly up-regulated, promoting the activation of self-reactive T cells. Accordingly, it is important to understand the contribution of these cells to the pathogenesis of SLE and the mechanisms responsible for their altered functionality during disease. One of the key enzymes that control monocyte and DC function is haem oxygenase-1 (HO-1), which catalyses the degradation of the haem group into biliverdin, carbon monoxide and free iron. These products possess immunosuppressive and anti-inflammatory capacities. The main goal of this work was to determine HO-1 expression in monocytes and DCs from patients with SLE and healthy controls. Hence, peripheral blood mononuclear cells were obtained from 43 patients with SLE and 30 healthy controls. CD14+ monocytes and CD4+ T cells were sorted by FACS and HO-1 expression was measured by RT-PCR. In addition, HO-1 protein expression was determined by FACS. HO-1 levels in monocytes were significantly reduced in patients with SLE compared with healthy controls. These results were confirmed by flow cytometry. No differences were observed in other cell types, such as DCs or CD4+ T cells, although decreased MHC-II levels were observed in DCs from patients with SLE. In conclusion, we found a significant decrease in HO-1 expression, specifically in monocytes from patients with SLE, suggesting that an imbalance of monocyte function could be partly the result of a decrease in HO-1 expression.
- ItemImmunoregulatory Properties of Heme Oxygenase-1(2011) Blancou, Philippe; Tardif, Virginie; Simon, Thomas; Rémy, Séverine; Carreño, Leandro; Kalergis, Alexis M.; Anegon, IgnacioHeme oxygenase-1 (HO-1) is one of the three isoforms of the heme oxygenase enzyme that catabolyzes the degradation of heme into biliverdin with the production of free iron and CO. HO-1 is induced by its substrate and by other stimuli, including agents involved in oxidative stress and proinflammatory cytokines as well as several anti-inflammatory stimuli. A growing body of evidence points toward the capacity of this molecule to inhibit immune reactions and the pivotal role of HO-1 in inflammatory diseases. We will first review the physiological role of HO-1 as determined by the analysis of HO-1-deficient individuals. This will be followed by an examination of the effect of HO-1 within immunopathological contexts such as immune disorders (autoimmunity and allergy) or infections. A section will be devoted to the use of an HO-1 inducer as an immunosuppressive molecule in transplantation. Finally, we will review the molecular basis of HO-1 actions on different immune cells.