Browsing by Author "Annis, J."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemA DESGW Search for the Electromagnetic Counterpart to the LIGO/Virgo Gravitational-wave Binary Neutron Star Merger Candidate S190510g(2020) Garcia, A.; Morgan, R.; Herner, K.; Palmese, A.; Soares Santos, M.; Annis, J.; Brout, D.; Vivas, A. K.; Drlica Wagner, A.; Quirola Vásquez, Jonathan Alexander; Santana Silva, L.; Tucker, D. L.; Allam, S.; Wiesner, M.; Garcia Bellido, J.; Gill, M. S. S.; Sako, M.; Kessler, R.; Davis, T. M.; Scolnic, D.; Casares, J.; Chen, H.; Conselice, C.; Cooke, J.; Doctor, Z.; Foley, R. J.; Horvath, J.; Howell, D. A.; Kilpatrick, C. D.; Lidman, C.; Olivares, E. F.; Paz Chinchon, F.; Pineda G., J.; Rest, A.; Sherman, N.; Abbott, T. M. C.; Aguena, M.; Avila, S.; Bertin, E.; Bhargava, S.; Brooks, D.; Burke, D. L.; Rosell, A. C.; Kind, M. C.; Carretero, J.; Costanzi, M.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.
- ItemConstraints on the Physical Properties of GW190814 through Simulations Based on DECam Follow-up Observations by the Dark Energy Survey(2020) Morgan, R.; Soares Santos, M.; Annis, J.; Herner, K.; Garcia, A.; Palmese, A.; Drlica Wagner, A.; Kessler, R.; Garcia Bellido, J.; Quirola Vásquez, Jonathan Alexander; Bachmann, T. G.; Sherman, N.; Allam, S.; Bechtol, K.; Bom, C. R.; Brout, D.; Butler, R. E.; Butner, M.; Cartier, R.; Chen, H.; Conselice, C.; Cook, E.; Davis, T. M.; Doctor, Z.; Farr, B.; Figueiredo, A. L.; Finley, D. A.; Foley, R. J.; Galarza, J. Y.; Gill, M. S. S.; Gruendl, R. A.; Holz, D. E.; Kuropatkin, N.; Lidman, C.; Lin, H.; Malik, U.; Mann, A. W.; Marriner, J.; Marshall, J. L.; Martinez Vazquez, C. E.; Meza, N.; Neilsen, E.; Nicolaou, C.; Olivares, E. F.; Paz Chinchon, F.; Points, S.; Rodriguez, O.; Sako, M.; Scolnic, D.; Smith, M.; Sobreira, F.; Tucker, D. L.; Vivas, A. K.
- ItemFirst cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases(2019) Kessler, R.; Brout, D.; D'Andrea, C. B.; Davis, T. M.; Hinton, S. R.; Kim, A. G.; Lasker, J.; Lidman, C.; Macaulay, E.; Moeller, A.; Sako, M.; Scolnic, D.; Smith, M.; Sullivan, M.; Zhang, B.; Andersen, P.; Asorey, J.; Avelino, A.; Calcino, J.; Carollo, D.; Challis, P.; Childress, M.; Clocchiatti, A.; Crawford, S.; Filippenko, A. V.; Foley, R. J.; Glazebrook, K.; Hoormann, J. K.; Kasai, E.; Kirshner, R. P.; Lewis, G. F.; Mandel, K. S.; March, M.; Morganson, E.; Muthukrishna, D.; Nugent, P.; Pan, Y. -C.; Sommer, N. E.; Swann, E.; Thomas, R. C.; Tucker, B. E.; Uddin, S. A.; Abbott, T. M. C.; Allam, S.; Annis, J.; Avila, S.; Banerji, M.; Bechtol, K.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Crocce, M.; da Costa, L. N.; Davis, C.; De Vicente, J.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; Garcia-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Hartley, W. G.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Nord, B.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Serrano, S.; Sevilla-Noarbe, I.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Walker, A. R.; Zhang, Y.We describe catalogue-level simulations of Type Ia supernova (SN Ia) light curves in the Dark Energy Survey Supernova Program (DES-SN) and in low-redshift samples from the Center for Astrophysics (CfA) and the Carnegie Supernova Project (CSP). These simulations are used to model biases from selection effects and light-curve analysis and to determine bias corrections for SN Ia distance moduli that are used to measure cosmological parameters. To generate realistic light curves, the simulation uses a detailed SN Ia model, incorporates information from observations (point spread function, sky noise, zero-point), and uses summary information (e.g. detection efficiency versus signal-to-noise ratio) based on 10 000 fake SN light curves whose fluxes were overlaid on images and processed with our analysis pipelines. The quality of the simulation is illustrated by predicting distributions observed in the data. Averaging within redshift bins, we find distance modulus biases up to 0.05 mag over the redshift ranges of the low-z and DES-SN samples. For individual events, particularly those with extreme red or blue colour, distance biases can reach 0.4 mag. Therefore, accurately determining bias corrections is critical for precision measurements of cosmological parameters. Files used to make these corrections are available at https://des.ncsa.illinois.edu/releases/sn.
- ItemKinematic Sunyaev-Zel'dovich effect with ACT, DES, and BOSS: A novel hybrid estimator(2023) Mallaby-Kay, M.; Amodeo, S.; Hill, J. C.; Aguena, M.; Allam, S.; Alves, O.; Annis, J.; Battaglia, N.; Battistelli, E. S.; Baxter, E. J.; Bechtol, K.; Becker, M. R.; Bertin, E.; Bond, J. R.; Brooks, D.; Calabrese, E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Choi, A.; Crocce, M.; da Costa, L. N.; Pereira, M. E. S.; De Vicente, J.; Desai, S.; Dietrich, J. P.; Doel, P.; Doux, C.; Drlica-Wagner, A.; Dunkley, J.; Elvin-Poole, J.; Everett, S.; Ferraro, S.; Ferrero, I.; Frieman, J.; Gallardo, P. A.; Garcia-Bellido, J.; Giannini, G.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; James, D. J.; Kosowsky, A.; Kuehn, K.; Lokken, M.; Louis, T.; Marshall, J. L.; McMahon, J.; Mena-Fernandez, J.; Menanteau, F.; Miquel, R.; Moodley, K.; Mroczkowski, T.; Naess, S.; Niemack, M. D.; Ogando, R. L. C.; Page, L.; Pandey, S.; Pieres, A.; Malagon, A. A. Plazas; Raveri, M.; Rodriguez-Monroy, M.; Rykoff, E. S.; Samuroff, S.; Sanchez, E.; Schaan, E.; Sevilla-Noarbe, I.; Sheldon, E.; Sifon, C.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; To, C.; Vargas, C.; Vavagiakis, E. M.; Weaverdyck, N.; Weller, J.; Wiseman, P.; Yanny, B.The kinematic and thermal Sunyaev-Zel'dovich (kSZ and tSZ) effects probe the abundance and thermodynamics of ionized gas in galaxies and clusters. We present a new hybrid estimator to measure the kSZ effect by combining cosmic microwave background temperature anisotropy maps with photometric and spectroscopic optical survey data. The method interpolates a velocity reconstruction from a spectroscopic catalog at the positions of objects in a photometric catalog, which makes it possible to leverage the high number density of the photometric catalog and the precision of the spectroscopic survey. Combining this hybrid kSZ estimator with a measurement of the tSZ effect simultaneously constrains the density and temperature of free electrons in the photometrically selected galaxies. Using the 1000 deg2 of overlap between the Atacama Cosmology Telescope (ACT) Data Release 5, the first three years of data from the Dark Energy Survey (DES), and the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12, we detect the kSZ signal at 4.8 & sigma; and reject the null (no-kSZ) hypothesis at 5.1 & sigma;. This corresponds to 2.0 & sigma; per 100,000 photometric objects with a velocity field based on a spectroscopic survey with 1=5th the density of the photometric catalog. For comparison, a recent ACT analysis using exclusively spectroscopic data from BOSS measured the kSZ signal at 2.1 & sigma; per 100,000 objects. Our derived constraints on the thermodynamic properties of the galaxy halos are consistent with previous measure-ments. With future surveys, such as the Dark Energy Spectroscopic Instrument and the Rubin Observatory Legacy Survey of Space and Time, we expect that this hybrid estimator could result in measurements with significantly better signal-to-noise than those that rely on spectroscopic data alone.
- ItemSOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO/Virgo Event GW190814*(2022) Tucker, D. L.; Wiesner, M. P.; Allam, S. S.; Soares-Santos, M.; Bom, C. R.; Butner, M.; Garcia, A.; Morgan, R.; Olivares E, F.; Palmese, A.; Santana-Silva, L.; Shrivastava, A.; Annis, J.; Garcia-Bellido, J.; Gill, M. S. S.; Herner, K.; Kilpatrick, C. D.; Makler, M.; Sherman, N.; Amara, A.; Lin, H.; Smith, M.; Swann, E.; Arcavi, I; Bachmann, T. G.; Bechtol, K.; Berlfein, F.; Briceno, C.; Brout, D.; Butler, R. E.; Cartier, R.; Casares, J.; Chen, H-Y; Conselice, C.; Contreras, C.; Cook, E.; Cooke, J.; Dage, K.; D'Andrea, C.; Davis, T. M.; de Carvalho, R.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M.; Farr, B.; Finley, D. A.; Fishbach, M.; Foley, R. J.; Forster-Buron, F.; Fosalba, P.; Friedel, D.; Frieman, J.; Frohmaier, C.; Gruendl, R. A.; Hartley, W. G.; Hiramatsu, D.; Holz, D. E.; Howell, D. A.; Kawash, A.; Kessler, R.; Kuropatkin, N.; Lahav, O.; Lundgren, A.; Lundquist, M.; Malik, U.; Mann, A. W.; Marriner, J.; Marshall, J. L.; Martinez-Vazquez, C. E.; McCully, C.; Menanteau, F.; Meza, N.; Narayan, G.; Neilsen, E.; Nicolaou, C.; Nichol, R.; Paz-Chinchon, F.; Pereira, M. E. S.; Pineda, J.; Points, S.; Quirola-Vasquez, J.; Rembold, S.; Rest, A.; Rodriguez, O.; Romer, A. K.; Sako, M.; Salim, S.; Scolnic, D.; Smith, J. A.; Strader, J.; Sullivan, M.; Swanson, M. E. C.; Thomas, D.; Valenti, S.; Varga, T. N.; Walker, A. R.; Weller, J.; Wood, M. L.; Yanny, B.; Zenteno, A.; Aguena, M.; Andrade-Oliveira, F.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Costanzi, M.; da Costa, L. N.; De Vicente, J.; Desai, S.; Everett, S.; Ferrero, I; Flaugher, B.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Kuehn, K.; Lima, M.; Maia, M. A. G.; Miquel, R.; Ogando, R. L. C.; Pieres, A.; Malagon, A. A. Plazas; Rodriguez-Monroy, M.; Sanchez, E.; Scarpine, V; Schubnell, M.; Serrano, S.; Sevilla-Noarbe, I; Suchyta, E.; Tarle, G.; To, C.; Zhang, Y.On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star-black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory. Target of Opportunity interrupts were issued on eight separate nights to observe 11 candidates using the 4.1 m Southern Astrophysical Research (SOAR) telescope's Goodman High Throughput Spectrograph in order to assess whether any of these transients was likely to be an optical counterpart of the possible NSBH merger. Here, we describe the process of observing with SOAR, the analysis of our spectra, our spectroscopic typing methodology, and our resultant conclusion that none of the candidates corresponded to the gravitational wave merger event but were all instead other transients. Finally, we describe the lessons learned from this effort. Application of these lessons will be critical for a successful community spectroscopic follow-up program for LVC observing run 4 (O4) and beyond.
- ItemThe Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev-Zel'dovich Galaxy Clusters(2021) Hilton, M.; Sifon, C.; Naess, S.; Madhavacheril, M.; Oguri, M.; Rozo, E.; Rykoff, E.; Abbott, T. M. C.; Adhikari, S.; Aguena, M.; Aiola, S.; Allam, S.; Amodeo, S.; Amon, A.; Annis, J.; Ansarinejad, B.; Aros-Bunster, C.; Austermann, J. E.; Avila, S.; Bacon, D.; Battaglia, N.; Beall, J. A.; Becker, D. T.; Bernstein, G. M.; Bertin, E.; Bhandarkar, T.; Bhargava, S.; Bond, J. R.; Brooks, D.; Burke, D. L.; Calabrese, E.; Carrasco Kind, M.; Carretero, J.; Choi, S. K.; Choi, A.; Conselice, C.; Costa, L. N. da; Costanzi, M.; Crichton, D.; Crowley, K. T.; Dunner, R.; Denison, E. V.; Devlin, M. J.; Dicker, S. R.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Duff, S. M.; Duivenvoorden, A. J.; Dunkley, J.; Everett, S.; Ferraro, S.; Ferrero, I.; Ferte, A.; Flaugher, B.; Frieman, J.; Gallardo, P. A.; Garcia-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giles, P.; Golec, J. E.; Gralla, M. B.; Grandis, S.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Han, D.; Hartley, W. G.; Hasselfield, M.; Hill, J. C.; Hilton, G. C.; Hincks, A. D.; Hinton, S. R.; Ho, S-P. P.; Honscheid, K.; Hoyle, B.; Hubmayr, J.; Huffenberger, K. M.; Hughes, J. P.; Jaelani, A. T.; Jain, B.; James, D. J.; Jeltema, T.; Kent, S.; Knowles, K.; Koopman, B. J.; Kuehn, K.; Lahav, O.; Lima, M.; Lin, Y-T.; Lokken, M.; Loubser, S. I.; MacCrann, N.; Maia, M. A. G.; Marriage, T. A.; Martin, J.; McMahon, J.; Melchior, P.; Menanteau, F.; Miquel, R.; Miyatake, H.; Moodley, K.; Morgan, R.; Mroczkowski, T.; Nati, F.; Newburgh, L. B.; Niemack, M. D.; Nishizawa, A. J.; Ogando, R. L. C.; Orlowski-Scherer, J.; Page, L. A.; Palmese, A.; Partridge, B.; Paz-Chinchon, F.; Phakathi, P.; Plazas, A. A.; Robertson, N. C.; Romer, A. K.; Rosell, A. Carnero; Salatino, M.; Sanchez, E.; Schaan, E.; Schillaci, A.; Sehgal, N.; Serrano, S.; Shin, T.; Simon, S. M.; Smith, M.; Soares-Santos, M.; Spergel, D. N.; Staggs, S. T.; Storer, E. R.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; To, C.; Trac, H.; Ullom, J. N.; Vale, L. R.; Lanen, J. Van; Vavagiakis, E. M.; Vicente, J. De; Wilkinson, R. D.; Wollack, E. J.; Xu, Z.; Zhang, Y.We present a catalog of 4195 optically confirmed Sunyaev-Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg(2) of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 < z < 1.91 (median z = 0.52). The catalog contains 222 z > 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M-500c > 3.8 x 10(14) M, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 24. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg(2)), the Hyper Suprime-Cam Subaru Strategic Program (469 deg(2)), and the Kilo Degree Survey (825 deg(2)). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr.