Browsing by Author "Arias, Ignacio"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAn in-depth system-level assessment of green hydrogen production by coupling solid oxide electrolysis and solar thermal systems(2025) Arias, Ignacio; Castillejo Cuberos, Armando; Battisti, Felipe G.; Romero Ramos, J.A.; Pérez, Manuel; González Portillo, L.F.; Valenzuela, Loreto; Cardemil Iglesias, José Miguel; Escobar, RodrigoThis study presents a comprehensive techno-economic analysis of green hydrogen production utilizing a third-generation Concentrated Solar Power system integrated with Solid Oxide Electrolysis Cells, examining system configurations under variable climatic conditions in Chile and Spain. By employing dynamic simulation models that consider hourly and sub-hourly datasets, the research assesses the impact of solar irradiance variability on hydrogen production efficiency. The integration approach explores the efficacy of utilizing high-temperature solar power-derived heat for enhanced electrolysis operation, highlighting the critical influence of solar resource quality and data temporal resolution in system performance. Several scenarios involving different solar multiples, thermal energy storage capacities, and electrolyzer sizes were analyzed to identify their effects on the Levelized Cost of Hydrogen. The economic analysis reveals that this cost is notably sensitive to operational parameters and system configurations, suggesting that optimal integration and scaling of solar power and electrolysis technologies could significantly reduce hydrogen production costs. The findings underscore the need for targeted energy policies and investments in renewable technologies to support cost-effective hydrogen production, promoting future research focusing on advanced materials for electrolysis cells and improved system integration strategies. This work enhances the understanding of integrating advanced solar thermal and electrolysis technologies, providing a robust framework for advancing global sustainable energy solutions.
- ItemModeling and Hourly Time-Scale Characterization of the Main Energy Parameters of Parabolic-Trough Solar Thermal Power Plants Using a Simplified Quasi-Dynamic Model(2021) Arias, Ignacio; Zarza, Eduardo; Valenzuela, Loreto; Perez-Garcia, Manuel; Romero Ramos, Jose Alfonso; Escobar, RodrigoA simplified mathematical model of parabolic-trough solar thermal power plants, which allow one to carry out an energetic characterization of the main thermal parameters that influence the solar field performance, was evaluated through a comparison of simulation results. Two geographical locations were selected to evaluate the mathematical model proposed in this work-one in each hemisphere-and design considerations according with the practical/operational experience were taken. Furthermore, independent simulations were performed using the System Advisor Model (SAM) software, their results were compared with those obtained by the simplified model. According with the above, the mathematical model allows one to carry out simulations with a high degree of flexibility and adaptability, in which the equations that allow the plant to be energetically characterized are composed of a series of logical conditions that help identify boundary conditions between dawn and sunset, direct normal irradiance transients, and when the thermal energy storage system must compensate the solar field energy deficits to maintain the full load operation of the plant. Due to the above, the developed model allows one to obtain satisfactory simulation results; referring to the net electric power production, this model provides results in both hemispheres with a relative percentage error in the range of [0.28-8.38%] compared with the results obtained with the SAM, with mean square values of 4.57% and 4.21% for sites 1 and 2, respectively.