Browsing by Author "Artigas Barrenechea, Rocío"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCorrelation between Ki67 and histological grade in breast cancer patients treated with preoperative chemotherapy(2014) Petric Guajardo, Militza Paulina; Martínez Riquelme, Santiago Felipe; Acevedo Claros, Francisco Nicolás; Oddo Benavides, David; Artigas Barrenechea, Rocío; Camus Appuhn, Mauricio Gonzalo; Sánchez Rojel, César GiovanniBackground and Aim: Breast cancer (BC) is a heterogeneous disease and cell proliferation markers may help to identify subtypes of clinical interest. We here analyzed the correlation between cell proliferation determined by Ki67 and HG in BC patients undergoing preoperative chemotherapy (PCT). Materials and Methods: We obtained clinical/pathological data from patients with invasive BC treated at our institution from 1999 until 2012. Expression of estrogen receptor (ER), progesterone receptor (PR), epidermal growth factor receptor type 2 (HER2) and Ki67 were determined by immuno-histochemistry (IHC). Clinicopathological subtypes were defined as: Luminal A, ER and/or PR positive, HER2 negative, HG 1 or 2; Luminal B, ER and/or PR positive, HER2 negative or positive and/or HG 3; triple negative (TN), ER, PR and HER2 negative independent of HG; HER2 positive, ER, PR negative and HER2 positive, independent of HG. By using Ki67, a value of 14% separated Luminal A and B tumors, independently of the histological grade. We analyzed correlations between Ki67 and HG, to define BC subtypes and their predictive value for response to PCT. Results: 1,560 BC patients were treated in the period, 147 receiving PCT (9.5%). Some 57 had sufficient clinicopathological information to be included in the study. Median age was 52 years (26-72), with 87.7% invasive ductal carcinomas (n=50). We performed IHC for Ki67 in 40 core biopsies and 50 surgical biopsies, 37 paired samples with Ki67 before and after chemotherapy being available. There was no significant correlation between Ki67 and HG (p=0.237), both categorizing patients into different subtypes. In most cases Ki67 decreased after PCT (65.8%). Only 3 patients had pathologic complete response (cPR). Conclusions: In our experience we did not find associations between Ki67 and HG. Determination of clinicopathological luminal subtypes differs by using Ki67 or HG.
- ItemProtein kinase B (AKT) upregulation and Thy‑1‑αvβ3 integrin‑induced phosphorylation of Connexin43 by activated AKT in astrogliosis(2023) Pérez-Núñez, Ramón; Chamorro, Alejandro; González, María F.; Contreras, Pamela; Artigas Barrenechea, Rocío; Corvalán R., Alejandro; van Zundert, Brigitte; Reyes, Christopher; Moya, Pablo R.; Avalos, Ana M.; Schneider, Pascal; Quest, Andrew F. G.; Leyton, LisetteBackground: In response to brain injury or inflammation, astrocytes undergo hypertrophy, proliferate, and migrate to the damaged zone. These changes, collectively known as "astrogliosis", initially protect the brain; however, astrogliosis can also cause neuronal dysfunction. Additionally, these astrocytes undergo intracellular changes involving alterations in the expression and localization of many proteins, including αvβ3 integrin. Our previous reports indicate that Thy-1, a neuronal glycoprotein, binds to this integrin inducing Connexin43 (Cx43) hemichannel (HC) opening, ATP release, and astrocyte migration. Despite such insight, important links and molecular events leading to astrogliosis remain to be defined. Methods: Using bioinformatics approaches, we analyzed different Gene Expression Omnibus datasets to identify changes occurring in reactive astrocytes as compared to astrocytes from the normal mouse brain. In silico analysis was validated by both qRT-PCR and immunoblotting using reactive astrocyte cultures from the normal rat brain treated with TNF and from the brain of a hSOD1G93A transgenic mouse model. We evaluated the phosphorylation of Cx43 serine residue 373 (S373) by AKT and ATP release as a functional assay for HC opening. In vivo experiments were also performed with an AKT inhibitor (AKTi). Results: The bioinformatics analysis revealed that genes of the PI3K/AKT signaling pathway were among the most significantly altered in reactive astrocytes. mRNA and protein levels of PI3K, AKT, as well as Cx43, were elevated in reactive astrocytes from normal rats and from hSOD1G93A transgenic mice, as compared to controls. In vitro, reactive astrocytes stimulated with Thy-1 responded by activating AKT, which phosphorylated S373Cx43. Increased pS373Cx43 augmented the release of ATP to the extracellular medium and AKTi inhibited these Thy-1-induced responses. Furthermore, in an in vivo model of inflammation (brain damage), AKTi decreased the levels of astrocyte reactivity markers and S373Cx43 phosphorylation. Conclusions: Here, we identify changes in the PI3K/AKT molecular signaling network and show how they participate in astrogliosis by regulating the HC protein Cx43. Moreover, because HC opening and ATP release are important in astrocyte reactivity, the phosphorylation of Cx43 by AKT and the associated increase in ATP release identify a potential therapeutic window of opportunity to limit the adverse effects of astrogliosis.