Browsing by Author "Baier, Jorge A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA heuristic search approach to planning with temporally extended preferences(ELSEVIER SCIENCE BV, 2009) Baier, Jorge A.; Bacchus, Fahiem; Mcllraith, Sheila A.Planning with preferences involves not only finding a plan that achieves the goal, it requires finding a preferred plan that achieves the goal, where preferences over plans are specified as part of the planner's input. In this paper we provide a technique for accomplishing this objective. Our technique can deal with a rich class of preferences, including so-called temporally extended preferences (TEPs). Unlike simple preferences which express desired properties of the final state achieved by a plan, TEPs can express desired properties of the entire sequence of states traversed by a plan, allowing the user to express a much richer set of preferences. Our technique involves converting a planning problem with TEPs into an equivalent planning problem containing only simple preferences. This conversion is accomplished by augmenting the inputed planning domain with a new set of predicates and actions for updating these predicates. We then provide a collection of new heuristics and a specialized search algorithm that can guide the planner towards preferred plans. Under some fairly general conditions our method is able to find a most preferred plan-i.e., an optimal plan. It can accomplish this without having to resort to admissible heuristics, which often perform poorly in practice. Nor does our technique require an assumption of restricted plan length or make-span. We have implemented our approach in the HPLAN-P planning system and used it to compete in the 5th International Planning Competition, where it achieved distinguished performance in the Qualitative Preferences track. (C) 2008 Elsevier B.V. All rights reserved.
- ItemAvoiding and Escaping Depressions in Real-Time Heuristic Search(AI ACCESS FOUNDATION, 2012) Hernandez, Carlos; Baier, Jorge A.Heuristics used for solving hard real-time search problems have regions with depressions. Such regions are bounded areas of the search space in which the heuristic function is inaccurate compared to the actual cost to reach a solution. Early real-time search algorithms, like LRTA*, easily become trapped in those regions since the heuristic values of their states may need to be updated multiple times, which results in costly solutions. State-of-the-art real-time search algorithms, like LSS-LRTA* or LRTA* (k), improve LRTA*'s mechanism to update the heuristic, resulting in improved performance. Those algorithms, however, do not guide search towards avoiding depressed regions. This paper presents depression avoidance, a simple real-time search principle to guide search towards avoiding states that have been marked as part of a heuristic depression. We propose two ways in which depression avoidance can be implemented: mark-and-avoid and move-to-border. We implement these strategies on top of LSS-LRTA* and RTAA*, producing 4 new real-time heuristic search algorithms: aLSS-LRTA*, daLSS-LRTA*, aRTAA*, and daRTAA*. When the objective is to find a single solution by running the real-time search algorithm once, we show that daLSS-LRTA* and daRTAA* outperform their predecessors sometimes by one order of magnitude. Of the four new algorithms, daRTAA* produces the best solutions given a fixed deadline on the average time allowed per planning episode. We prove all our algorithms have good theoretical properties: in finite search spaces, they find a solution if one exists, and converge to an optimal after a number of trials.