Browsing by Author "Barrientos, L. F."
Now showing 1 - 14 of 14
Results Per Page
Sort Options
- ItemA z=0.9 supercluster of X-ray luminous, optically selected, massive galaxy clusters(2008) Gilbank, David G.; Yee, H. K. C.; Ellingson, E.; Hicks, A. K.; Gladders, M. D.; Barrientos, L. F.; Keeney, B.We report the discovery of a compact supercluster structure at z = 0.9. The structure comprises three optically selected clusters, all of which are detected in X- rays and spectroscopically confirmed to lie at the same redshift. The Chandra X-ray temperatures imply individual masses of similar to 5 x 10(14) M-circle dot. The X-ray masses are consistent with those inferred from optical-X-ray scaling relations established at lower redshift. A strongly lensed z similar to 4 Lyman break galaxy behind one of the clusters allows a strong-lensing mass to be estimated for this cluster, which is in good agreement with the X-ray measurement. Optical spectroscopy of this cluster gives a dynamical mass in good agreement with the other independent mass estimates. The three components of the RCS 2319 + 00 supercluster are separated from their nearest neighbor by a mere < 3 Mpc in the plane of the sky and likely ! 10 Mpc along the line of sight, and we interpret this structure as the high-redshift antecedent of massive (similar to 10(15) M) clusters such as MS 0451.5 - 0305.
- ItemCorrelations between H α equivalent width and galaxy properties at z = 0.47: Physical or selection-driven?(2021) Khostovan, A. A.; Malhotra, S.; Rhoads, J. E.; Harish, S.; Jiang, C.; Wang, J.; Wold, I.; Zheng, Z. -Y.; Barrientos, L. F.; Coughlin, A.; Hu, W.; Infante, L.; Perez, L. A.; Pharo, J.; Valdes, F.; Walker, A. R.The H alpha equivalent width (EW) is an observational proxy for specific star formation rate (sSFR) and a tracer of episodic, bursty star-formation activity. Previous assessments show that the H alpha EW strongly anticorrelates with stellar mass as M-0.25 similar to the sSFR - stellar mass relation. However, such a correlation could be driven or even formed by selection effects. In this study, we investigate how H alpha EW distributions correlate with physical properties of galaxies and how selection biases could alter such correlations using a z = 0.47 narrow-band-selected sample of 1572 H alpha emitters from the Ly alpha Galaxies in the Epoch of Reionization (LAGER) survey as our observational case study. The sample covers a 3 deg(2) area of COSMOS with a survey comoving volume of 1.1 x 10(5) Mpc(3). We assume an intrinsic EW distribution to form mock samples of H alpha emitters and propagate the selection criteria to match observations, giving us control on how selection biases can affect the underlying results. We find that H alpha EW intrinsically correlates with stellar mass as W-0 proportional to M-0.16 +/- 0.03 and decreases by a factor of similar to 3 from 10(7) M-circle dot to 10(10) M-circle dot, while not correcting for selection effects steepens the correlation as M-025 +/- 0.04, We find low-mass H alpha emitters to be similar to 320 times more likely to have rest-frame EW > 200 angstrom compared to high-mass H alpha emitters. Combining the intrinsic W-0-stellar mass correlation with an observed stellar mass function correctly reproduces the observed H alpha luminosity function, while not correcting for selection effects underestimates the number of bright emitters. This suggests that the W-0-stellar mass correlation when corrected for selection effects is physically significant and reproduces three statistical distributions of galaxy populations (line luminosity function, stellar mass function, EW distribution). At lower stellar masses, we find there are more high-EW outliers compared to high stellar masses, even after we take into account selection effects. Our results suggest that high sSFR outliers indicative of bursty star formation activity are intrinsically more prevalent in low-mass H alpha emitters and not a byproduct of selection effects.
- ItemFirst Results from the Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) Survey: Cosmological Reionization at z similar to 7(2017) Zheng, Z. Y.; Wang, J. X.; Rhoads, J.; Infante Lira, Leopoldo; Malhotra, S.; Hu, W. D.; Walker, A. R.; Jiang, L. H.; Jiang C. Y.; Hibon, P.; Gonzalez, A.; Kong, X. U.; Zheng, X. Z.; Galaz, Gaspar; Barrientos, L. F.; Zheng, Z. Y.; Wang, J. X.; Rhoads, J.; Infante Lira, Leopoldo; Malhotra, S.; Hu, W. D.; Walker, A. R.; Jiang, L. H.; Jiang C. Y.; Hibon, P.; Gonzalez, A.; Kong, X. U.; Zheng, X. Z.; Galaz, Gaspar; Barrientos, Luis Felipe; Zheng, Z. Y.; Wang, J. X.; Rhoads, J.; Infante Lira, Leopoldo; Malhotra, S.; Hu, W. D.; Walker, A. R.; Jiang, L. H.; Jiang C. Y.; Hibon, P.; Gonzalez, A.; Kong, X. U.; Zheng, X. Z.; Galaz, Gaspar; Barrientos, Luis Felipe
- ItemGalaxy Clusters in the Line of Sight to Background Quasars. I. Survey Design and Incidence of Mg II Absorbers at Cluster Redshifts(2008) Lopez, S.; Barrientos, L. F.; Lira, P.; Padilla, N.; Gilbank, D. G.; Gladders, M. D.; Maza, J.; Tejos, N.; Vidal, M.; Yee, H. K. C.
- ItemOrientation effects on cool gas absorption from gravitational-arc tomography of a z=0.77 disc galaxy(2022) Fernandez-Figueroa, A.; Lopez, S.; Tejos, N.; Berg, T. A. M.; Ledoux, C.; Noterdaeme, P.; Afruni, A.; Barrientos, L. F.; Gonzalez-Lopez, J.; Hamel, M.; Johnston, E. J.; Katsianis, A.; Sharon, K.; Solimano, M.We use spatially resolved spectroscopy of a distant giant gravitational arc to test orientation effects on Mg ii absorption equivalent width (EW) and covering fraction () in the circumgalactic medium of a foreground star-forming galaxy (G1) at z similar to 0.77. Forty-two spatially-binned arc positions uniformly sample impact parameters (D) to G1 between 10 and 30 kpc and azimuthal angles alpha between 30 degrees and 90 degrees (minor axis). We find an EW-D anticorrelation, akin to that observed statistically in quasar absorber studies, and an apparent correlation of both EW and with alpha, revealing a non-isotropic gas distribution. In line with our previous results on Mg ii kinematics suggesting the presence of outflows in G1, at minimum a simple 3D static double-cone model (to represent the trace of bipolar outflows) is required to recreate the EW spatial distribution. The D and alpha values probed by the arc cannot confirm the presence of a disc, but the data highly disfavour a disc alone. Our results support the interpretation that the EW-alpha correlation observed statistically using other extant probes is partly shaped by bipolar metal-rich winds.
- ItemThe Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps(2010) Hincks, A. D.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; Bond, J. R.; Brown, B.; Burger, B.; Chervenak, J.; Das, S.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dunkley, J.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hajian, A.; Halpern, M.; Hasselfield, M.; Hernández-Monteagudo, C.; Hilton, G. C.; Hilton, M.; Hlozek, R.; Huffenberger, K. M.; Hughes, D. H.; Hughes, J. P.; Infante, L.; Irwin, K. D.; Jimenez, R.; Juin, J. B.; Kaul, M.; Klein, J.; Kosowsky, A.; Lau, J. M.; Limon, M.; Lin, Y. -T.; Lupton, R. H.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Menanteau, F.; Moodley, K.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Partridge, B.; Quintana, H.; Reid, B.; Sehgal, N.; Sievers, J.; Spergel, D. N.; Staggs, S. T.; Stryzak, O.; Swetz, D. S.; Switzer, E. R.; Thornton, R.; Trac, H.; Tucker, C.; Verde, L.; Warne, R.; Wilson, G.; Wollack, E.; Zhao, Y.The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect and show five clusters previously detected with X-ray or SZ observations. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.
- ItemTHE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE 600 < ℓ < 8000 COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 GHz(2010) Fowler, J. W.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; Bond, J. R.; Brown, B.; Burger, B.; Chervenak, J.; Das, S.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dunkley, J.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Hajian, A.; Halpern, M.; Hasselfield, M.; Hernández-Monteagudo, C.; Hilton, G. C.; Hilton, M.; Hincks, A. D.; Hlozek, R.; Huffenberger, K. M.; Hughes, D. H.; Hughes, J. P.; Infante, L.; Irwin, K. D.; Jimenez, R.; Juin, J. B.; Kaul, M.; Klein, J.; Kosowsky, A.; Lau, J. M.; Limon, M.; Lin, Y. -T.; Lupton, R. H.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Menanteau, F.; Moodley, K.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Partridge, B.; Quintana, H.; Reid, B.; Sehgal, N.; Sievers, J.; Spergel, D. N.; Staggs, S. T.; Swetz, D. S.; Switzer, E. R.; Thornton, R.; Trac, H.; Tucker, C.; Verde, L.; Warne, R.; Wilson, G.; Wollack, E.; Zhao, Y.We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1'.4 angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg(2) of the southern sky, in a 4 degrees.2 wide strip centered on declination 53 degrees south. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < l < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 < l < 1150. The power beyond the Silk damping tail of the CMB (l similar to 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to sigma(8) = 0.8. We constrain the model's amplitude A(SZ) < 1.63 (95% CL). If interpreted as a measurement of sigma(8), this implies sigma(SZ)(8) < 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a six-parameter Lambda CDM model plus point sources and the SZ effect is consistent with these results.
- ItemThe color bimodality in galaxy clusters since z∼0.9(2008) Loh, Yeong-Shang; Ellingson, E.; Yee, H. K. C.; Gilbank, D. G.; Gladders, M. D.; Barrientos, L. F.We present the evolution of the color-magnitude distribution of galaxy clusters from z = 0.45 to z = 0.9 using a homogeneously selected sample of similar to 1000 clusters drawn from the Red-Sequence Cluster Survey (RCS). The red fraction of galaxies decreases as a function of increasing redshift for all clustercentric radii, consistent with the Butcher-Oemler effect, and suggesting that the cluster blue population may be identified with newly infalling galaxies. We also find that the red fraction at the core has a shallower evolution compared with that at the cluster outskirts. Detailed examination of the color distribution of blue galaxies suggests that they have colors consistent with normal spirals and may redden slightly with time. Galaxies of starburst spectral type contribute less than 5% of the increase in the blue population at high redshift, implying that the observed Butcher-Oemler effect is not caused by a unobscured starbursts, but is more consistent with a normal coeval field population.
- ItemThe Color Bimodality in Galaxy Clusters since z ~ 0.9(2008) Loh, Yeong-Shang; Ellingson, E.; Yee, H. K. C.; Gilbank, D. G.; Gladders, M. D.; Barrientos, L. F.
- ItemThe Hubble Space Telescope Cluster Supernova Survey. III. Correlated Properties of Type Ia Supernovae and Their Hosts at 0.9 < Z < 1.46(2012) Meyers, J.; Aldering, G.; Barbary, K.; Barrientos, L. F.; Brodwin, M.; Dawson, K. S.; Deustua, S.; Doi, M.; Eisenhardt, P.; Faccioli, L.; Fakhouri, H. K.; Fruchter, A. S.; Gilbank, D. G.; Gladders, M. D.; Goldhaber, G.; Gonzalez, A. H.; Hattori, T.; Hsiao, E.; Ihara, Y.; Kashikawa, N.; Koester, B.; Konishi, K.; Lidman, C.; Lubin, L.; Morokuma, T.; Oda, T.; Perlmutter, S.; Postman, M.; Ripoche, P.; Rosati, P.; Rubin, D.; Rykoff, E.; Spadafora, A.; Stanford, S. A.; Suzuki, N.; Takanashi, N.; Tokita, K.; Yasuda, N.; Supernova Cosmology Project, TheUsing the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields, we search for correlations between the properties of SNe and their host galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify 6 SN Ia hosts that are early-type cluster members and 11 SN Ia hosts that are early-type field galaxies. We confirm for the first time at z > 0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions expected for passive galaxies enable us to measure stellar masses of early-type SN hosts. In combination with stellar mass estimates of late-type GOODS SN hosts from Thomson & Chary, we investigate the correlation of host mass with Hubble residual observed at lower redshifts. Although the sample is small and the uncertainties are large, a hint of this relation is found atz > 0.9. By simultaneously fitting the average cluster galaxy formation history and dust content to the red-sequence scatters, we show that the reddening of early-type cluster SN hosts is likely E(B - V) less than or similar to 0.06. The similarity of the field and cluster early-type host samples suggests that field early-type galaxies that lie on the red sequence may also be minimally affected by dust. Hence, the early-type-hosted SNe Ia studied here occupy a more favorable environment to use as well-characterized high-redshift standard candles than other SNe Ia.
- ItemThe red-sequence luminosity function in galaxy clusters since z ∼ 1(2008) Gilbank, David G.; Yee, H. K. C.; Ellingson, E.; Gladders, M. D.; Loh, Y. -S.; Barrientos, L. F.; Barkhouse, W. A.We use a statistical sample of similar to 500 rich clusters taken from 72 deg(2) of the Red-Sequence Cluster Survey (RCS-1) to study the evolution of similar to 30,000 red-sequence galaxies in clusters over the redshift range 0.35 < z < 0.95. We construct red-sequence luminosity functions (RSLFs) for a well-defined, homogeneously selected, richness-limited sample. The RSLF at higher redshifts shows a deficit of faint red galaxies (to M-V >= -19.7) with their numbers increasing toward the present epoch. This is consistent with the "downsizing" picture in which star formation ended at earlier times for the most massive (luminous) galaxies and more recently for less massive (fainter) galaxies. We observe a richness dependence to the downsizing effect in the sense that, at a given redshift, the drop-off of faint red galaxies is greater for poorer (less massive) clusters, suggesting that star formation ended earlier for galaxies in more massive clusters. The decrease in faint red-sequence galaxies is accompanied by an increase in faint blue galaxies, implying that the process responsible for this evolution of faint galaxies is the termination of star formation, possibly with little or no need for merging. At the bright end, we also see an increase in the number of blue galaxies with increasing redshift, suggesting that termination of star formation in higher mass galaxies may also be an important formation mechanism for higher mass ellipticals. By comparing with a low-redshift Abell cluster sample, we find that the downsizing trend seen within RCS-1 has continued to the local universe.
- ItemThe VST ATLAS Quasar Survey - II. Halo mass profiles of galaxies, LRGs and galaxy clusters via quasar and CMB lensing(2024) Eltvedt, Alice M.; Shanks, T.; Metcalfe, N.; Ansarinejad, B.; Barrientos, L. F.; Murphy, D. N. A.; Alexander, D. M.We cross-correlate a low-contamination subset of the VST ATLAS g < 22.5 quasar catalogue with g < 21.5 galaxy clusters, r < 21 galaxies and r < 19.5 luminous red galaxies (LRGs) to probe their halo mass profiles via quasar magnification bias caused by weak lensing. In the case of galaxy clusters, we find that at small scales their mass profiles are well fitted by Navarro, Frenk, and White models with masses within the expected range. For the galaxies, we find consistency with previous Sloan Digital Sky Survey-based results for the galaxy-quasar cross-correlation and the galaxy auto-correlation functions. Disagreement as to whether the cross-correlation results are in tension with Lambda cold dark matter appears due to different assumptions as to whether galaxies trace mass. We conclude that halo occupation distribution (HOD) models fit the galaxy-quasar lensing results better than models where galaxies trace the mass. We further test the cluster and galaxy HOD models in the 2-halo range using the Planck cosmic microwave background (CMB) lensing map, finding that the cross-correlation with both the poorest clusters and the galaxies may be marginally overpredicted by the above HOD models. Finally, we measure the magnification bias of LRGs using both quasar and CMB lensing and find that the observed quasar lensing amplitude may be approximate to 2x too high and, on larger scales, the CMB lensing amplitude may be too low to be explained by a standard LRG HOD model.
- ItemThe VST ATLAS Quasar Survey - III. Halo mass function via quasar clustering and quasar-CMB lensing cross-clustering(2024) Eltvedt, Alice M.; Shanks, T.; Metcalfe, N.; Ansarinejad, B.; Barrientos, L. F.; Murphy, D. N. A.; Alexander, D. M.We exploit the VST ATLAS quasar (QSO) catalogue to perform three measurements of the quasar halo mass profile. First, we make a new estimate of the angular autocorrelation function of approximate to 230 000 ATLAS quasars with z(photo)less than or similar to 2.5 and 17
- ItemThe VST ATLAS quasar survey I: Catalogue of photometrically selected quasar candidates(2023) Eltvedt, Alice M.; Shanks, T.; Metcalfe, N.; Ansarinejad, B.; Barrientos, L. F.; Sharp, R.; Malik, U.; Murphy, D. N. A.; Irwin, M.; Wilson, M.; Alexander, D. M.; Kovacs, Andras; Garcia-Bellido, Juan; Ahlen, Steven; Brooks, David; de la Macorra, Axel; Font-Ribera, Andreu; Gontcho, Satya Gontcho a; Honscheid, Klaus; Meisner, Aaron; Miquel, Ramon; Nie, Jundan; Tarle, Gregory; Vargas-Magana, Mariana; Zhou, ZhiminWe present the VST ATLAS Quasar Survey, consisting of similar to 1229 000 quasar (QSO) candidates with 16 < g < 22.5 over similar to 4700 deg(2). The catalogue is based on VST ATLAS+NEOWISE imaging surveys and aims to reach a QSO sky density of 130 deg-2 for z < 2.2 and similar to 30 deg(-2) for z > 2.2. To guide our selection, we use X-ray/UV/optical/MIR data in the extended William Herschel Deep Field (WHDF) where we find a g < 22.5 broad-line QSO density of 269 +/- 67 deg(-2), roughly consistent with the expected similar to 196 deg(-2). We find that similar to 25 per cent of our QSOs are morphologically classed as optically extended. Overall, we find that in these deep data, MIR, UV, and X-ray selections are similar to 70-90 per cent complete while X-ray suffers less contamination than MIR and UV. MIR is however more sensitive than X-ray or UV to z > 2.2 QSOs at g < 22.5 and the S-X (0.5 - 10 keV) > 1 x10(-14) ergs cm(-2) s(-1) limit of eROSITA. We adjust the selection criteria from our previous 2QDES pilot survey and prioritize VST ATLAS candidates that show both UV and MIR excess, also selecting candidates initially classified as extended. We test our selections using data from DESI (which will be released in DR1) and 2dF to estimate the efficiency and completeness, and we use ANNz2 to determine photometric redshifts. Applying over the similar to 4700 deg(2) ATLAS area gives us similar to 917 000 z < 2.2 QSO candidates of which 472 000 are likely to be z < 2.2 QSOs, implying a sky density of similar to 100 deg(-2), which our WHDF analysis suggests will rise to at least 130 deg(-2) when eROSITA X-ray candidates are included. At z > 2.2, we find similar to 310() 000 candidates, of which 169 000 are likely to be QSOs for a sky density of similar to 36 deg(-2).