Browsing by Author "Bauer, F. E."
Now showing 1 - 20 of 62
Results Per Page
Sort Options
- Item2 mm Observations and the Search for High-redshift Dusty Star-forming Galaxies(2023) Cowie, L. L.; Barger, A. J.; Bauer, F. E.Finding high-redshift ( z >> 4) dusty star-forming galaxies is extremely challenging. It has recently been suggested that millimeter selections may be the best approach since the negative K-correction makes galaxies at a given farinfrared luminosity brighter at z greater than or similar to 4 than those at z = 2-3. Here we analyze this issue using a deep Atacama Large Millimeter/submillimeter Array (ALMA) 2 mm sample obtained by targeting ALMA 870 mu m priors (these priors were the result of targeting SCUBA-2 850 mu m sources) in the GOODS-S. We construct prior-based 2 mm galaxy number counts and compare them with published blank field-based 2 mm counts, finding good agreement down to 0.2 mJy. Only a fraction of the current 2 mm extragalactic background light is resolved, and we estimate what observational depths may be needed to resolve it fully. By complementing the 2 mm ALMA data with a deep SCUBA-2 450 mu m sample, we exploit the steep gradient with a redshift of the 2 mm-450 mu m flux density ratio to estimate redshifts for those galaxies without spectroscopic or robust optical/near-infrared photometric redshifts. Our observations measure galaxies with star formation rates in excess of 250M(circle dot) yr(-1). For these galaxies, the star formation rate densities fall by a factor of 9 from z = 2-3 to z = 5-6.
- ItemA hard X-ray view of luminous and ultra-luminous infrared galaxies in GOALS - I. AGN obscuration along the merger sequence(2021) Ricci, C.; Privon, G. C.; Pfeifle, R. W.; Armus, L.; Iwasawa, K.; Torres-Albà, N.; Satyapal, S.; Bauer, F. E.; Treister, E.; Ho, L. C.; Aalto, S.; Arévalo, P.; Barcos-Muñoz, L.; Charmandaris, V.; Diaz-Santos, T.; Evans, A. S.; Gao, T.; Inami, H.; Koss, M. J.; Lansbury, G.; Linden, S. T.; Medling, A.; Sanders, D. B.; Song, Y.; Stern, D.; U, V.; Ueda, Y.; Yamada, S.The merger of two or more galaxies can enhance the inflow of material from galactic scales into the close environments of active galactic nuclei (AGNs), obscuring and feeding the supermassive black hole (SMBH). Both recent simulations and observations of AGN in mergers have confirmed that mergers are related to strong nuclear obscuration. However, it is still unclear how AGN obscuration evolves in the last phases of the merger process. We study a sample of 60 luminous and ultra-luminous IR galaxies (U/LIRGs) from the GOALS sample observed by NuSTAR. We find that the fraction of AGNs that are Compton thick (CT;N-H >= 10(24)cm(-2) ) peaks at at a late merger stage, prior to coalescence, when the nuclei have projected separations (d(sep)) of 0.4-6 kpc. A similar peak is also observed in the median N-H [[(1.6 +/- 0.5) x 10(24) cm(-2)].]. The vast majority (85(-9)(+7) per cent)) of the AGNs in the final merger stages (d(sep) less than or similar to 10 kpc) are heavily obscured (N-H = 10(23) cm(-2)), and the median N-H of the accreting SMBHs in our sample is systematically higher than that of local hard X-ray-selected AGN, regardless of the merger stage. This implies that these objects have very obscured nuclear environments, with the gas almost completely covering the AGN in late mergers. CT AGNs tend to have systematically higher absorption-corrected X-ray luminosities than less obscured sources. This could either be due to an evolutionary effect, with more obscured sources accreting more rapidly because they have more gas available in their surroundings, or to a selection bias. The latter scenario would imply that we are still missing a large fraction of heavily obscured, lower luminosity (L2-10 less than or similar to 10(43) erg s(-1)) AGNs in U/LIRGs.
- ItemA random forest-based selection of optically variable AGN in the VST-COSMOS field(2021) De Cicco, D.; Bauer, F. E.; Paolillo, M.; Cavuoti, S.; Sanchez-Saez, P.; Brandt, W. N.; Pignata, G.; Vaccari, M.; Radovich, M.Context. The survey of the COSMOS field by the VLT Survey Telescope is an appealing testing ground for variability studies of active galactic nuclei (AGN). With 54 r-band visits over 3.3 yr and a single-visit depth of 24.6 r-band mag, the dataset is also particularly interesting in the context of performance forecasting for the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST).Aims. This work is the fifth in a series dedicated to the development of an automated, robust, and efficient methodology to identify optically variable AGN, aimed at deploying it on future LSST data.Methods. We test the performance of a random forest (RF) algorithm in selecting optically variable AGN candidates, investigating how the use of different AGN labeled sets (LSs) and features sets affects this performance. We define a heterogeneous AGN LS and choose a set of variability features and optical and near-infrared colors based on what can be extracted from LSST data.Results. We find that an AGN LS that includes only Type I sources allows for the selection of a highly pure (91%) sample of AGN candidates, obtaining a completeness with respect to spectroscopically confirmed AGN of 69% (vs. 59% in our previous work). The addition of colors to variability features mildly improves the performance of the RF classifier, while colors alone prove less effective than variability in selecting AGN as they return contaminated samples of candidates and fail to identify most host-dominated AGN. We observe that a bright (r less than or similar to 21 mag) AGN LS is able to retrieve candidate samples not affected by the magnitude cut, which is of great importance as faint AGN LSs for LSST-related studies will be hard to find and likely imbalanced. We estimate a sky density of 6.2x10(6) AGN for the LSST main survey down to our current magnitude limit.
- ItemA structure function analysis of VST-COSMOS AGN(2022) De Cicco, D.; Bauer, F. E.; Paolillo, M.; Sanchez-Saez, P.; Brandt, W. N.; Vagnetti, F.; Pignata, G.; Radovich, M.; Vaccari, M.Context. We present our sixth work in a series dedicated to variability studies of active galactic nuclei (AGN), based on the survey of the COSMOS field by the VLT Survey Telescope (VST). Its 54 r-band visits over 3.3 yr and single-visit depth of 24.6 r-band mag make this dataset a valuable scaled-down version that can help forecast the performance of the Rubin Observatory Legacy Survey of Space and Time (LSST).
- ItemA Submillimeter Survey of Faint Galaxies behind 10 Strong Lensing Clusters(2022) Cowie, L. L.; Barger, A. J.; Bauer, F. E.; Chen, C-C; Jones, L. H.; Orquera-Rojas, C.; Rosenthal, M. J.; Taylor, A. J.We present deep SCUBA-2 450 mu m and 850 mu m imaging of 10 strong lensing clusters. We provide a >4 sigma SCUBA-2 850 mu m catalog of the 404 sources lying within a radius of 4.' 5 4.5 sigma Atacama Large Millimeter/submillimeter Array (ALMA) 850 mu m detections in the clusters A370, MACSJ1149.5+2223, and MACSJ0717.5+3745 from our targeted ALMA observations, along with catalogs of all other >4.5 sigma ALMA (mostly 1.2 mm) detections in any of our cluster fields from archival ALMA observations. For the ALMA detections, we give spectroscopic or photometric redshifts, where available, from our own Keck observations or from the literature. We confirm the use of the 450-850 mu m flux ratio for estimating redshifts. We use lens models to determine magnifications, most of which are in the 1.5-4 range. After supplementing the ALMA cluster sample with Chandra Deep Field ALMA and Submillimeter Array samples, we find no evidence for evolution in the redshift distribution of submillimeter galaxies down to demagnified 850 mu m fluxes of 0.5 mJy. Given this result, we conclude that our observed trend of increasing F160W to 850 mu m flux ratio from brighter to fainter demagnified 850 mu m flux results from the fainter submillimeter galaxies having less extinction. However, there is wide spread in this relation, including the presence of some optical/near-infrared dark galaxies down to fluxes below 1 mJy. Finally, with insights from our ALMA analysis, we analyze our SCUBA-2 sample and present 55 850 mu m bright z > 4 candidates.
- ItemAGNFITTER-RX: Modeling the radio-to-X-ray spectral energy distributions of AGNs(2024) Martinez-Ramirez, L. N.; Rivera, G. Calistro; Lusso, E.; Bauer, F. E.; Nardini, E.; Buchner, J.; Brown, M. J. I.; Pineda, J. C. B.; Temple, M. J.; Banerji, M.; Stalevski, M.; Hennawi, J. F.We present new advancements in the modeling of the spectral energy distributions (SEDs) of active galaxies by introducing the radio-to-X-ray fitting capabilities of the publicly available Bayesian code AGNFITTER. The new code release, called AGNFITTER-RX, models the broad-band photometry covering the radio, infrared (IR), optical, ultraviolet (UV), and X-ray bands consistently using a combination of theoretical and semi-empirical models of the active galactic nucleus (AGN) and host-galaxy emission. This framework enables the detailed characterization of four physical components of the active nuclei, namely the accretion disk, the hot dusty torus, the relativistic jets and core radio emission, and the hot corona, and can be used to model three components within the host galaxy: stellar populations, cold dust, and the radio emission from the star-forming regions. Applying AGNFITTER-RX to a diverse sample of 36 AGN SEDs at z less than or similar to 0.7 from the AGN SED ATLAS, we investigated and compared the performance of state-of-the-art torus and accretion disk emission models in terms of fit quality and inferred physical parameters. We find that clumpy torus models that include polar winds and semi-empirical accretion disk templates including emission-line features significantly increase the fit quality in 67% of the sources by reducing by 2 sigma fit residuals in the 1.5-5 mu m and 0.7 mu m regimes. We demonstrate that, by applying AGNFITTER-RX to photometric data, we are able to estimate the inclination and opening angles of the torus, consistent with spectroscopic classifications within the AGN unified model, as well as black hole masses congruent with virial estimates based on H alpha. We investigate wavelength-dependent AGN fractions across the spectrum for Type 1 and Type 2 AGNs, finding dominant AGN fractions in radio, mid-infrared, and X-ray bands, which are in agreement with the findings from empirical methods for AGN selection. The wavelength coverage and the flexibility for the inclusion of state-of-the-art theoretical models make AGNFITTER-RX a unique tool for the further development of SED modeling for AGNs in present and future radio-to-X-ray galaxy surveys.
- ItemAlert Classification for the ALeRCE Broker System: The Light Curve Classifier(2021) Sánchez-Sáez, P.; Reyes, I.; Valenzuela, C.; Förster, F.; Eyheramendy, S.; Elorrieta, F.; Bauer, F. E.; Cabrera-Vives, G.; Estévez, P. A.; Catelan, Márcio; Pignata, G.; Huijse, P.; De Cicco, D.; Arévalo, P.; Carrasco-Davis, R.; Abril, J.; Kurtev, R.; Borissova, J.; Arredondo, J.; Castillo-Navarrete, E.; Rodríguez, D.; Ruz-Mieres, D.; Moya, A.; Sabatini-Gacitúa, L.; Sepúlveda-Cobo, C.; Camacho-Iñiguez, E.
- ItemAlert Classification for the ALeRCE Broker System: The Real-time Stamp Classifier(2021) Carrasco-Davis, R.; Reyes, E.; Valenzuela, C.; Förster, F.; Estévez, P. A.; Pignata, G.; Bauer, F. E.; Reyes, I.; Sánchez-Sáez, P.; Cabrera-Vives, G.; Eyheramendy, S.; Catelan, Márcio; Arredondo, J.; Castillo-Navarrete, E.; Rodríguez-Mancini, D.; Ruz-Mieres, D.; Moya, A.; Sabatini-Gacitúa, L.; Sepúlveda-Cobo, C.; Mahabal, A. A.; Silva-Farfán, J.; Camacho-Iñiguez, E.; Galbany, L.We present a real-time stamp classifier of astronomical events for the Automatic Learning for the Rapid Classification of Events broker, ALeRCE. The classifier is based on a convolutional neural network, trained on alerts ingested from the Zwicky Transient Facility (ZTF). Using only the science, reference, and difference images of the first detection as inputs, along with the metadata of the alert as features, the classifier is able to correctly classify alerts from active galactic nuclei, supernovae (SNe), variable stars, asteroids, and bogus classes, with high accuracy (~94%) in a balanced test set. In order to find and analyze SN candidates selected by our classifier from the ZTF alert stream, we designed and deployed a visualization tool called SN Hunter, where relevant information about each possible SN is displayed for the experts to choose among candidates to report to the Transient Name Server database. From 2019 June 26 to 2021 February 28, we have reported 6846 SN candidates to date (11.8 candidates per day on average), of which 971 have been confirmed spectroscopically. Our ability to report objects using only a single detection means that 70% of the reported SNe occurred within one day after the first detection. ALeRCE has only reported candidates not otherwise detected or selected by other groups, therefore adding new early transients to the bulk of objects available for early follow-up. Our work represents an important milestone toward rapid alert classifications with the next generation of large etendue telescopes, such as the Vera C. Rubin Observatory....
- ItemALMA Lensing Cluster Survey: a strongly lensed multiply imaged dusty system at z ≥ 6(2021) Laporte, N.; Zitrin, A.; Ellis, R. S.; Fujimoto, S.; Brammer, G.; Richard, J.; Oguri, M.; Caminha, G. B.; Kohno, K.; Yoshimura, Y.; Ao, Y.; Bauer, F. E.; Caputi, K.; Egami, E.; Espada, D.; Gonzalez-Lopez, J.; Hatsukade, B.; Knudsen, K. K.; Lee, M. M.; Magdis, G.; Ouchi, M.; Valentino, F.; Wang, T.We report the discovery of an intrinsically faint, quintuply-imaged, dusty galaxy MACS0600-z6 at a redshift z = 6.07 viewed through the cluster MACSJ0600.1-2008 (z = 0.46). A similar or equal to 4 sigma dust detection is seen at 1.2mm as part of the ALMA Lensing Cluster Survey (ALCS), an on-going ALMA Large programme, and the redshift is secured via [C II] 158 mu m emission described in a companion paper. In addition, spectroscopic follow-up with GMOS/Gemini-North shows a break in the galaxy's spectrum, consistent with the Lyman break at that redshift. We use a detailed mass model of the cluster and infer a magnification mu greater than or similar to 30 for the most magnified image of this galaxy, which provides an unprecedented opportunity to probe the physical properties of a sub-luminous galaxy at the end of cosmic reionization. Based on the spectral energy distribution, we infer lensing-corrected stellar and dust masses of 2.9(-2.3)(+11.5) x 10(9) and 4.8(-3.4)(+4.5) x 10(6) M-circle dot, respectively, a star formation rate of 9.7(-6.6)(+22.0) M-circle dot yr(-1), an intrinsic size of 0.54(-0.14)(+0.26) kpc, and a luminosity-weighted age of 200 +/- 100 Myr. Strikingly, the dust production rate in this relatively young galaxy appears to be larger than that observed for equivalent, lower redshift sources. We discuss if this implies that early supernovae are more efficient dust producers and the consequences for using dust mass as a probe of earlier star formation.
- ItemALMA Lensing Cluster Survey: Hubble Space Telescope and Spitzer Photometry of 33 Lensed Fields Built with CHArGE(2022) Kokorev, V; Brammer, G.; Fujimoto, S.; Kohno, K.; Magdis, G. E.; Valentino, F.; Toft, S.; Oesch, P.; Davidzon, I; Bauer, F. E.; Coe, D.; Egami, E.; Oguri, M.; Ouchi, M.; Postman, M.; Richard, J.; Jolly, J-B; Knudsen, K. K.; Sun, F.; Weaver, J. R.; Ao, Y.; Baker, A. J.; Bradley, L.; Caputi, K., I; Dessauges-Zavadsky, M.; Espada, D.; Hatsukade, B.; Koekemoer, A. M.; Arancibia, A. M. Munoz; Shimasaku, K.; Umehata, H.; Wang, T.; Wang, W-HWe present a set of multiwavelength mosaics and photometric catalogs in the Atacama Large Millimeter/submillimeter Array (ALMA) lensing cluster survey fields. The catalogs were built by the reprocessing of archival data from the Complete Hubble Archive for Galaxy Evolution compilation, taken by the Hubble Space Telescope (HST) in the Reionization Lensing Cluster Survey, Cluster Lensing And Supernova survey with Hubble, and Hubble Frontier Fields. Additionally, we have reconstructed the Spitzer Infrared Array Camera 3.6 and 4.5 mu m mosaics, by utilizing all the available archival IPAC Infrared Science Archive/Spitzer Heritage Archive exposures. To alleviate the effect of blending in such a crowded region, we have modeled the Spitzer photometry by convolving the HST detection image with the Spitzer point-spread function using the novel GOLFIR software. The final catalogs contain 218,000 sources, covering a combined area of 690 arcmin(2) , a factor of similar to 2 improvement over the currently existing photometry. A large number of detected sources is a result of reprocessing of all available and sometimes deeper exposures, in conjunction with a combined optical-near-IR detection strategy. These data will serve as an important tool in aiding the search of the submillimeter galaxies in future ALMA surveys, as well as follow-ups of the HST dark and high-z sources with JWST. Coupled with the available HST photometry, the addition of the 3.6 and 4.5 mu m bands will allow us to place a better constraint on the photometric redshifts and stellar masses of these objects, thus giving us an opportunity to identify high-redshift candidates for spectroscopic follow-ups and to answer the important questions regarding the Epoch of Reionization and formation of the first galaxies. The mosaics, photometric catalogs, and the best-fit physical properties are publicly available at https:// github.com/dawn-cph/alcs-clusters.
- ItemAn X-ray fading, UV brightening QSO at z ≈ 6(2022) Vito, F.; Mignoli, M.; Gilli, R.; Brandt, W. N.; Shemmer, O.; Bauer, F. E.; Bisogni, S.; Luo, B.; Marchesi, S.; Nanni, R.; Zamorani, G.; Comastri, A.; Cusano, F.; Gallerani, S.; Vignali, C.; Lanzuisi, G.Explaining the existence of super massive black holes (SMBHs) with M-BH greater than or similar to 10(8) M-circle dot at z greater than or similar to 6 is a persistent challenge to modern astrophysics. Multiwavelength observations of z greater than or similar to 6 quasi-stellar objects (QSOs) reveal that, on average, their accretion physics is similar to that of their counterparts at lower redshift. However, QSOs showing properties that deviate from the general behavior can provide useful insights into the physical processes responsible for the rapid growth of SMBHs in the early universe. We present X-ray (XMM-Newton, 100 ks) follow-up observations of a z approximate to 6 QSO, J1641+3755, which was found to be remarkably X-ray bright in a 2018 Chandra dataset. J1641+3755 is not detected in the 2021 XMM-Newton observation, implying that its X-ray flux decreased by a factor greater than or similar to 7 on a notably short timescale (i.e., approximate to 115 rest-frame days), making it the z > 4 QSO with the largest variability amplitude. We also obtained rest-frame ultraviolet (UV) spectroscopic and photometric data with the Large Binocular Telescope (LBT). Surprisingly, comparing our LBT photometry with archival data, we found that J1641+3755 became consistently brighter in the rest-frame UV band from 2003 to 2016, while no strong variation occurred from 2016 to 2021. Its rest-frame UV spectrum is consistent with the average spectrum of high-redshift QSOs. Multiple narrow absorption features are present, and several of them can be associated with an intervening system at z = 5 :67. Several physical causes can explain the variability properties of J1641+3755, including intrinsic variations of the accretion rate, a small-scale obscuration event, gravitational lensing due to an intervening object, and an unrelated X-ray transient in a foreground galaxy in 2018. Accounting for all of the z > 6 QSOs with multiple X-ray observations separated by more that ten rest-frame days, we found an enhancement of strongly (i.e., by a factor >3) X-ray variable objects compared to QSOs at later cosmic times. This finding may be related to the physics of fast accretion in high-redshift QSOs.
- ItemAT 2022aedm and a New Class of Luminous, Fast-cooling Transients in Elliptical Galaxies(2023) Nicholl, M.; Srivastav, S.; Fulton, M. D.; Gomez, S.; Huber, M. E.; Oates, S. R.; Ramsden, P.; Rhodes, L.; Smartt, S. J.; Smith, K. W.; Aamer, A.; Anderson, J. P.; Bauer, F. E.; Berger, E.; de Boer, T.; Chambers, K. C.; Charalampopoulos, P.; Chen, T. -w.; Fender, R. P.; Fraser, M.; Gao, H.; Green, D. A.; Galbany, L.; Gompertz, B. P.; Gromadzki, M.; Gutierrez, C. P.; Howell, D. A.; Inserra, C.; Jonker, P. G.; Kopsacheili, M.; Lowe, T. B.; Magnier, E. A.; Mccully, C.; Mcgee, S. L.; Moore, T.; Mueller-Bravo, T. E.; Newsome, M.; Gonzalez, E. Padilla; Pellegrino, C.; Pessi, T.; Pursiainen, M.; Rest, A.; Ridley, E. J.; Shappee, B. J.; Sheng, X.; Smith, G. P.; Terreran, G.; Tucker, M. A.; Vinko, J.; Wainscoat, R. J.; Wiseman, P.; Young, D. R.We present the discovery and extensive follow-up of a remarkable fast-evolving optical transient, AT 2022aedm, detected by the Asteroid Terrestrial impact Last Alert Survey (ATLAS). In the ATLAS o band, AT 2022aedm exhibited a rise time of 9 & PLUSMN; 1 days, reaching a luminous peak with M g & AP; -22 mag. It faded by 2 mag in the g band during the next 15 days. These timescales are consistent with other rapidly evolving transients, though the luminosity is extreme. Most surprisingly, the host galaxy is a massive elliptical with negligible current star formation. Radio and X-ray observations rule out a relativistic AT 2018cow-like explosion. A spectrum in the first few days after explosion showed short-lived He ii emission resembling young core-collapse supernovae, but obvious broad supernova features never developed; later spectra showed only a fast-cooling continuum and narrow, blueshifted absorption lines, possibly arising in a wind with v & AP; 2700 km s-1. We identify two further transients in the literature (Dougie in particular, as well as AT 2020bot) that share similarities in their luminosities, timescales, color evolution, and largely featureless spectra and propose that these may constitute a new class of transients: luminous fast coolers. All three events occurred in passive galaxies at offsets of & SIM;4-10 kpc from the nucleus, posing a challenge for progenitor models involving massive stars or black holes. The light curves and spectra appear to be consistent with shock breakout emission, though this mechanism is usually associated with core-collapse supernovae. The encounter of a star with a stellar-mass black hole may provide a promising alternative explanation.
- ItemBASS XXXVII: The Role of Radiative Feedback in the Growth and Obscuration Properties of Nearby Supermassive Black Holes(2022) Ricci, C.; Ananna, T. T.; Temple, M. J.; Urry, C. M.; Koss, M. J.; Trakhtenbrot, B.; Ueda, Y.; Stern, D.; Bauer, F. E.; Treister, E.; Privon, G. C.; Oh, K.; Paltani, S.; Stalevski, M.; Ho, L. C.; Fabian, A. C.; Mushotzky, R.; Chang, C. S.; Ricci, F.; Kakkad, D.; Sartori, L.; Baer, R.; Caglar, T.; Powell, M.; Harrison, F.We study the relation between obscuration and supermassive black hole (SMBH) accretion using a large sample of hard X-ray selected active galactic nuclei (AGNs). We find a strong decrease in the fraction of obscured sources above the Eddington limit for dusty gas (log lambda(Edd) >= -2) confirming earlier results, and consistent with the radiation-regulated unification model. This also explains the difference in the Eddington ratio distribution functions (ERDFs) of type 1 and type 2 AGNs obtained by a recent study. The break in the ERDF of nearby AGNs is at log lambda*(Edd) = -1.34 +/- 0.07. This corresponds to the lambda(Edd) where AGNs transition from having most of their sky covered by obscuring material to being mostly devoid of absorbing material. A similar trend is observed for the luminosity function, which implies that most of the SMBH growth in the local universe happens when the AGN is covered by a large reservoir of gas and dust. These results could be explained with a radiation-regulated growth model, in which AGNs move in the N-H-lambda(Edd) plane during their life cycle. The growth episode starts with the AGN mostly unobscured and accreting at low lambda(Edd). As the SMBH is further fueled, lambda(Edd), N-H and the covering factor increase, leading the AGN to be preferentially observed as obscured. Once lambda(Edd) reaches the Eddington limit for dusty gas, the covering factor and N-H rapidly decrease, leading the AGN to be typically observed as unobscured. As the remaining fuel is depleted, the SMBH goes back into a quiescent phase.
- ItemBAT AGN Spectroscopic Survey XXVII: scattered X-Ray radiation in obscured active galactic nuclei(2021) Gupta, K. K.; Ricci, C.; Tortosa, A.; Ueda, Y.; Kawamuro, T.; Koss, M.; Trakhtenbrot, B.; Oh, K.; Bauer, F. E.; Ricci, F.; Privon, G. C.; Zappacosta, L.; Stern, D.; Kakkad, D.; Piconcelli, E.; Veilleux, S.; Mushotzky, R.; Caglar, T.; Ichikawa, K.; Elagali, A.; Powell, M. C.; Urry, C. M.; Harrison, F.Accreting supermassive black holes (SMBHs), also known as active galactic nuclei (AGN), are generally surrounded by large amounts of gas and dust. This surrounding material reprocesses the primary X-ray emission produced close to the SMBH and gives rise to several components in the broadband X-ray spectra of AGN, including a power-law possibly associated with Thomson-scattered radiation. In this work, we study the properties of this scattered component for a sample of 386 hard-X-ray-selected, nearby (z similar to 0.03) obscured AGN from the 70-month Swift/BAT catalogue. We investigate how the fraction of Thomson-scattered radiation correlates with different physical properties of AGN, such as line-of-sight column density, X-ray luminosity, black hole mass, and Eddington ratio. We find a significant negative correlation between the scattering fraction and the column density. Based on a large number of spectral simulations, we exclude the possibility that this anticorrelation is due to degeneracies between the parameters. The negative correlation also persists when considering different ranges of luminosity, black hole mass, and Eddington ratio. We discuss how this correlation might be either due to the angle dependence of the Thomson cross-section or to more obscured sources having a higher covering factor of the torus. We also find a positive correlation between the scattering fraction and the ratio of [OIII] lambda 5007 to X-ray luminosity. This result is consistent with previous studies and suggests that the Thomson-scattered component is associated with the narrow-line region.
- ItemBAT AGN spectroscopic survey – XV: the high frequency radio cores of ultra-hard X-ray selected AGN(OUP, 2019) Smith, K. L.; Mushotzky, R. F.; Koss, M.; Trakhtenbrot, B.; Ricci, Claudio; Wong, O. I.; Bauer, F. E.; Ricci, F.; Vogel, S.; Stern, D.; Powell, M. C.; Urry, C. M.; Harrison, F.; Mejia-Restrepo, J.; Oh, K.; Baek, J.; Chun, A.We have conducted 22 GHz radio imaging at 1 arcsec resolution of 100 low-redshift AGN selected at 14–195 keV by the Swift-BAT. We find a radio core detection fraction of 96 per cent, much higher than lower frequency radio surveys. Of the 96 radio-detected AGN, 55 have compact morphologies, 30 have morphologies consistent with nuclear star formation, and 11 have sub-kpc to kpc-scale jets. We find that the total radio power does not distinguish between nuclear star formation and jets as the origin of the radio emission. For 87 objects, we use optical spectroscopy to test whether AGN physical parameters are distinct between radio morphological types. We find that X-ray luminosities tend to be higher if the 22 GHz morphology is jet-like, but find no significant difference in other physical parameters. We find that the relationship between the X-ray and core radio luminosities is consistent with the LR/LX ∼ 10−5 of coronally active stars. We further find that the canonical fundamental planes of black hole activity systematically overpredict our radio luminosities, particularly for objects with star formation morphologies.
- ItemDiscovery of the first heavily obscured QSO candidate at z > 6 in a close galaxy pair(2019) Vito, F.; Brandt, W. N.; Bauer, F. E.; Gilli, R.; Luo, B.; Zamorani, G.; Calura, F.; Comastri, A.; Mazzucchelli, C.; Mignoli, M.; Nanni, R.; Shemmer, O.; Vignali, C.; Brusa, M.; Cappelluti, N.; Civano, F.; Volonteri, M.While theoretical arguments predict that most of the early growth of supermassive black holes (SMBHs) happened during heavily obscured phases of accretion, current methods used for selecting z > 6 quasars (QSOs) are strongly biased against obscured QSOs, thus considerably limiting our understanding of accreting SMBHs during the first gigayear of the Universe from an observational point of view. We report the Chandra discovery of the first heavily obscured QSO candidate in the early universe, hosted by a close (approximate to 5 kpc) galaxy pair at z = 6.515. One of the members is an optically classified type-1 QSO, PSO167-13. The companion galaxy was first detected as a [C II] emitter by Atacama large millimeter array (ALMA). An X-ray source is significantly (P = 0.9996) detected by Chandra in the 2-5 keV band, with < 1.14 net counts in the 0.5-2 keV band, although the current positional uncertainty does not allow a conclusive association with either PSO167-13 or its companion galaxy. From X-ray photometry and hardness-ratio arguments, we estimated an obscuring column density of N-H > 2 x 10(24) cm(-2) and N-H > 6 x 10(23) cm(-2) at 68% and 90% confidence levels, respectively. Thus, regardless of which of the two galaxies is associated with the X-ray emission, this source is the first heavily obscured QSO candidate at z > 6.
- ItemDust Properties of 870 μm-selected Galaxies in GOODS-S(2023) McKay, S. J.; Barger, A. J.; Cowie, L. L.; Bauer, F. E.; Rosenthal, M. J. NicandroWe analyze the dust properties of 57 870 mu m-selected dusty star-forming galaxies in GOODS-S using new deep Atacama Large Millimeter/Submillimeter Array 1.2, 2, and 3 mm continuum imaging together with other farinfrared through millimeter data. We fit the spectral energy distributions (SEDs) with optically thin modified blackbodies to constrain the emissivity indices and effective dust temperatures, finding a median emissivity index of beta=1.78(-0.25)(+0.43) and a median temperature of T-d =33.6(-5.4)(+12.1) K. We observe a negative correlation between beta and T-d. By testing several SED models, we determine that the derived emissivity indices can be influenced by opacity assumptions. Our temperature measurements are consistent with no evolution in dust temperature with redshift.
- ItemEnhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschel observations(2012) Santini, P.; Rosario, D. J.; Shao, L.; Lutz, D.; Maiolino, R.; Alexander, D. M.; Altieri, B.; Andreani, P.; Aussel, H.; Bauer, F. E.; Berta, S.; Bongiovanni, A.; Brandt, W. N.; Brusa, M.; Cepa, J.; Cimatti, A.; Daddi, E.; Elbaz, D.; Fontana, A.; Schreiber, N. M. Foerster; Genzel, R.; Grazian, A.; Le Floc'h, E.; Magnelli, B.; Mainieri, V.; Nordon, R.; Garcia, A. M. Perez; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Salvato, M.; Sanchez-Portal, M.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wuyts, S.We compare the average star formation (SF) activity in X-ray selected AGN hosts with a mass-matched control sample of inactive galaxies, including both star forming and quiescent sources, in the 0.5 < z < 2.5 redshift range. Recent observations carried out by PACS, the 60-210 mu m photometric camera on board the Herschel Space Observatory, in GOODS-S, GOODS-N and COSMOS allow us to obtain an unbiased estimate of the far-IR luminosity, and hence of the SF properties, of the two samples. Accurate AGN host stellar mass estimates are obtained by decomposing their total emission into the stellar and the nuclear components. We report evidence of a higher average SF activity in AGN hosts with respect to the control sample of inactive galaxies. The level of SF enhancement is modest (similar to 0.26 dex at similar to 3 sigma confidence level) at low X-ray luminosities (L-X less than or similar to 10(43.5) erg s(-1)) and more pronounced (0.56 dex at >10 sigma confidence level) in the hosts of luminous AGNs. However, when comparing to star forming galaxies only, AGN hosts are found broadly consistent with the locus of their "main sequence". We investigate the relative far-IR luminosity distributions of active and inactive galaxies, and find a higher fraction of PACS detected, hence normal and highly star forming systems among AGN hosts. Although different interpretations are possible, we explain our findings as a consequence of a twofold AGN growth path: faint AGNs evolve through secular processes, with instantaneous AGN accretion not tightly linked to the current total SF in the host galaxy, while the luminous AGNs co-evolve with their hosts through periods of enhanced AGN activity and star formation, possibly through major mergers. While an increased SF activity with respect to inactive galaxies of similar mass is expected in the latter, we interpret the modest SF offsets measured in low-L-X AGN hosts as either a) generated by non-synchronous accretion and SF histories in a merger scenario or b) due to possible connections between instantaneous SF and accretion that can be induced by smaller scale (non-major merger) mechanisms. Far-IR luminosity distributions favour the latter scenario.
- ItemEnsemble power spectral density of SDSS quasars in UV/optical bands(2024) Petrecca, V.; Papadakis, I. E.; Paolillo, M.; De Cicco, D.; Bauer, F. E.Context. Quasar variability has proven to be a powerful tool to constrain the properties of their inner engine and the accretion process onto supermassive black holes. Correlations between UV/optical variability and physical properties have been long studied with a plethora of different approaches and time-domain surveys, although the detailed picture is not yet clear. Aims. We analysed archival data from the SDSS Stripe-82 region to study how the quasar power spectral density (PSD) depends on the black hole mass, bolometric luminosity, accretion rate, redshift, and rest-frame wavelength. We developed a model-independent analysis framework that could be easily applied to upcoming large surveys such as the Legacy Survey of Space and Time (LSST). Methods. We used light curves of 8042 spectroscopically confirmed quasars, observed in at least six yearly seasons in five filters ugriz. We split the sample into bins of similar physical properties containing at least 50 sources, and we measured the ensemble PSD in each of them. Results. We find that a simple power law is a good fit to the power spectra in the frequency range explored. Variability does not depend on the redshift at a fixed wavelength. Instead, both PSD amplitude and slope depend on the black hole mass, accretion rate, and rest-frame wavelength. We provide scaling relations to model the observed variability as a function of the physical properties, and discuss the possibility of a universal PSD shape for all quasars, where frequencies scale with the black hole mass, while normalization and slope(s) are fixed (at any given wavelength and accretion rate).
- ItemExtragalactic fast X-ray transient candidates discovered by Chandra (2000-2014)(2022) Quirola-Vasquez, J.; Bauer, F. E.; Jonker, P. G.; Brandt, W. N.; Yang, G.; Levan, A. J.; Xue, Y. Q.; Eappachen, D.; Zheng, X. C.; Luo, B.Context. Extragalactic fast X-ray transients (FXRTs) are short flashes of X-ray photons of unknown origin that last a few seconds to hours.