Browsing by Author "Bayliss, Matthew B."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemA 30 kpc Spatially Extended Clumpy and Asymmetric Galactic Outflow at z ∼ 1.7(2022) Shaban, Ahmed; Bordoloi, Rongmon; Chisholm, John; Sharma, Soniya; Sharon, Keren; Rigby, Jane R.; Gladders, Michael G.; Bayliss, Matthew B.; Barrientos, L. Felipe; Lopez, Sebastian; Tejos, Nicolas; Ledoux, Cedric; Florian, Michael K.We image the spatial extent of a cool galactic outflow with fine-structure Fe ii* emission and resonant Mg ii emission in a gravitationally lensed star-forming galaxy at z = 1.70347. The Fe ii* and Mg ii (continuum-subtracted) emissions span out to radial distances of similar to 14.33 and 26.5 kpc, respectively, with maximum spatial extents of similar to 21 kpc for Fe ii* emission and similar to 30 kpc for Mg ii emission. Mg ii emission is patchy and covers a total area of similar to 184 kpc(2), constraining the minimum area covered by the outflowing gas to be similar to 13% of the total area. Mg ii emission is asymmetric and shows similar to 21% more extended emission along the decl. direction. We constrain the covering fractions of the Fe ii* and Mg ii emission as a function of radial distance and characterize them with a power-law model. The Mg ii 2803 emission line shows two kinematically distinct emission components and may correspond to two distinct shells of outflowing gas with a velocity separation of Delta v similar to 400 km s(-1). By using multiple images with different magnifications of the galaxy in the image plane, we trace the Fe ii* and Mg ii emissions around three individual star-forming regions. In all cases, both the Fe ii* and Mg ii emissions are more spatially extended compared to the star-forming regions traced by the [O ii] emission. These findings provide robust constraints on the spatial extent of the outflowing gas and, combined with outflow velocity and column density measurements, will give stringent constraints on mass-outflow rates of the galaxy.
- ItemA clumpy and anisotropic galaxy halo at redshift 1 from gravitational-arc tomography(2018) Lopez, Sebastian; Tejos, Nicolas; Ledoux, Cedric; Felipe Barrientos, L.; Sharon, Keren; Rigby, Jane R.; Gladders, Michael D.; Bayliss, Matthew B.; Pessa, Ismael
- ItemALMA Resolves the Molecular Gas in a Young Low-metallicity Starburst Galaxy at z.=1.7(2017) González López, Jorge; Barrientos, Luis Felipe; Gladders, M. D.; Wuyts, Eva; Rigby, Jane; Sharon, Keren; Aravena, Manuel; Bayliss, Matthew B.; Ibar, Eduardo
- ItemDissecting a 30 kpc galactic outflow at z 1.7(2023) Shaban, Ahmed; Bordoloi, Rongmon; Chisholm, John; Rigby, Jane R.; Sharma, Soniya; Sharon, Keren; Tejos, Nicolas; Bayliss, Matthew B.; Barrientos, Luis Felipe; López, Sebastian; Ledoux, Cédric; Gladders, Michael G.; Florian, Michael K.We present the spatially resolved measurements of a cool galactic outflow in the gravitationally lensed galaxy RCS0327 at z ≈ 1.703 using VLT/MUSE IFU observations. We probe the cool outflowing gas, traced by blueshifted Mg II and Fe II absorption lines, in 15 distinct regions of the same galaxy in its image-plane. Different physical regions, 5 to 7 kpc apart within the galaxy, drive the outflows at different velocities (Vout ~ -161 to -240 km s-1), and mass outflow rates ($\dot{M}_{out} \sim$ 183 to 527 M⊙ yr-1). The outflow velocities from different regions of the same galaxy vary by 80 km s-1, which is comparable to the variation seen in a large sample of star-burst galaxies in the local Universe. Using multiply lensed images of RCS0327, we probe the same star-forming region at different spatial scales (0.5 kpc2 -- 25 kpc2), we find that outflow velocities vary between ~ -120 to -242 km s-1, and the mass outflow rates vary between ~ 37 to 254 M⊙ yr-1. The outflow momentum flux in this galaxy is ≥ 100% of the momentum flux provided by star-formation in individual regions, and outflow energy flux is ≈ 10% of the total energy flux provided by star-formation. These estimates suggest that the outflow in RCS0327 is energy driven. This work shows the importance of small scale variations of outflow properties due to the variations of local stellar properties of the host galaxy in the context of galaxy evolution....