Browsing by Author "Becker, RH"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOptical and radio properties of extragalactic sources observed by the first survey and the Sloan Digital Sky Survey(2002) Ivezic, Z; Menou, K; Knapp, GR; Strauss, MA; Lupton, RH; Vanden Berk, DE; Richards, GT; Tremonti, C; Weinstein, MA; Anderson, S; Bahcall, NA; Becker, RH; Bernardi, M; Blanton, M; Eisenstein, D; Fan, XH; Finkbeiner, D; Finlator, K; Frieman, J; Gunn, JE; Hall, PB; Kim, RSJ; Kinkhabwala, A; Narayanan, VK; Rockosi, CM; Schlegel, D; Schneider, DP; Strateva, I; SubbaRao, M; Thakar, AR; Voges, W; White, RL; Yanny, B; Brinkmann, J; Doi, M; Fukugita, M; Hennessy, GS; Munn, JA; Nichol, RC; York, DGWe discuss the optical and radio properties of similar to30,000 FIRST (radio, 20 cm, sensitive to 1 mJy) sources positionally associated within 1."5 with a Sloan Digital Sky Survey (SDSS) (optical, sensitive to r*similar to22.2) source in 1230 deg(2) of sky. The matched sample represents similar to30% of the 108,000 FIRST sources and 0.1% of the 2.5x10(7) SDSS sources in the studied region. SDSS spectra are available for 4300 galaxies and 1154 quasars from the matched sample and for a control sample of 140,000 galaxies and 20, 000 quasars in 1030 deg(2) of sky. Here we analyze only core sources, which dominate the sample; the fraction of SDSS-FIRST sources with complex radio morphology is determined to be less than 10%. This large and unbiased catalog of optical identifications provides much firmer statistical footing for existing results and allows several new findings. The majority (83%) of the FIRST sources identified with an SDSS source brighter than r*=21 are optically resolved; the fraction of resolved objects among the matched sources is a function of the radio flux, increasing from similar to50% at the bright end to similar to90% at the FIRST faint limit. Nearly all optically unresolved radio sources have nonstellar colors indicative of quasars. We estimate an upper limit of similar to5% for the fraction of quasars with broadband optical colors indistinguishable from those of stars. The distribution of quasars in the radio flux optical flux plane suggests the existence of the "quasar radio dichotomy" 8%+/-1% of all quasars with i*<18.5 are radio-loud, and this fraction seems independent of redshift and optical luminosity. The radio-loud quasars have a redder median color by 0.08±0.02 mag, and show a 3 times larger fraction of objects with extremely red colors. FIRST galaxies represent 5% of all SDSS galaxies with r*<17.5, and 1% for r*<20, and are dominated by red (u*-r*>2.22) galaxies, especially those with r*>17.5. Magnitude- and redshift-limited samples show that radio galaxies have a different optical luminosity distribution than nonradio galaxies selected by the same criteria; when galaxies are further separated by their colors, this result remains valid for both blue and red galaxies. For a given optical luminosity and redshift, the observed optical colors of radio galaxies are indistinguishable from those of all SDSS galaxies selected by identical criteria. The distributions of radio-to-optical flux ratio are similar for blue and red galaxies in redshift-limited samples; this similarity implies that the difference in their luminosity functions and resulting selection effects are the dominant cause for the preponderance of red radio galaxies in flux-limited samples. The fraction of radio galaxies whose emission-line ratios indicate an AGN(30%), rather than starburst, origin is 6 times larger than the corresponding fraction for all SDSS galaxies (r*<17.5). We confirm that the AGN-to-starburst galaxy number ratio increases with radio flux and find that radio emission from AGNs is more concentrated than radio emission from starburst galaxies.
- ItemSDSS J090334.92+502819.2: A new gravitational lens(2003) Johnston, DE; Richards, GT; Frieman, JA; Keeton, CR; Strauss, MA; Knapp, GR; Becker, RH; White, RL; Johnson, ET; Ma, ZM; SubbaRao, M; Bahcall, NA; Bernardi, M; Brinkmann, J; Eisenstein, DJ; Fukugita, M; Hall, PB; Inada, N; Pindor, B; Schlegel, DJ; Scranton, R; Sheldon, ES; Schneider, DP; Szalay, AS; York, DGWe report the discovery of a new gravitationally lensed quasar from the Sloan Digital Sky Survey, SDSS J090334.92+502819.2. This object was targeted for SDSS spectroscopy as a luminous red galaxy, but manual examination of the spectrum showed the presence of a quasar at zsimilar or equal to3.6 in addition to a red galaxy at z=0.388, and the SDSS image showed a second possible quasar image nearby. Follow-up imaging and spectroscopy confirmed the lensing hypothesis. In images taken at the Astrophysical Research Consortium 3.5 m telescope, two quasars are separated by 2".8; the lensing galaxy is clearly seen and is blended with one of the quasar images. Spectroscopy taken at the Keck II telescope shows that the quasars have identical redshifts of zsimilar or equal to3.6, and both show the presence of the same broad absorption line-like troughs. We present simple lens models that account for the geometry and magnifications. The lens galaxy lies near two groups of galaxies and may be a part of them. The models suggest that the groups may contribute considerable shear that has a strong effect on the lens configuration.
- ItemSDSS J092455.87+021924.9: An interesting gravitationally lensed quasar from the Sloan Digital Sky Survey(2003) Inada, N; Becker, RH; Burles, S; Castander, FJ; Eisenstein, D; Hall, PB; Johnston, DE; Pindor, B; Richards, GT; Schechter, PL; Sekiguchi, M; White, RL; Brinkmann, J; Frieman, JA; Kleinman, SJ; Krzesinski, J; Long, DC; Neilsn, EH; Newman, PR; Nitta, A; Schneider, DP; Snedden, S; York, DGWe report the discovery of a new gravitationally lensed quasar from the Sloan Digital Sky Survey, SDSS J092455.87+021924.9 (SDSS J0924+0219). This object was selected from among known SDSS quasars by an algorithm that was designed to select another known SDSS lensed quasar (SDSS J1226-0006A,B). Five separate components, three of which are unresolved, are identified in photometric follow-up observations obtained with the Magellan Consortium's 6.5 m Walter Baade Telescope at Las Campanas Observatory. Two of the unresolved components (designated A and B) are confirmed to be quasars with z = 1.524; the velocity difference is less than 100 km s(-1) according to spectra taken with the W. M. Keck Observatory's Keck II Telescope at Mauna Kea, Hawaii. A third stellar component, designated C, has the colors of a quasar with redshift similar to components A and B. The maximum separation of the point sources is 1."78. The other two sources, designated G and D, are resolved. Component G appears to be the best candidate for the lensing galaxy. Although component D is near the expected position of the fourth lensed component in a four-image lens system, its properties are not consistent with being the image of a quasar at z similar to 1.5. Nevertheless, the identical redshifts of components A and B and the presence of component C strongly suggest that this object is a gravitational lens. Our observations support the idea that a foreground object reddens the fourth lensed component and that another unmodeled effect (such as micro- or millilensing) demagnifies it, but we cannot rule out the possibility that SDSS J0924+0219 is an example of the relatively rare class of "three-component'' lens systems.