Browsing by Author "Bravo-Zehnder, Marcela"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGalectin-8 induces partial epithelial-mesenchymal transition with invasive tumorigenic capabilities involving a FAK/EGFR/proteasome pathway in Madin-Darby canine kidney cells(2018) Oyanadel, Claudia; Holmes, Christopher; Pardo, Evelyn; Retamal, Claudio; Shaughnessy, Ronan; Smith, Patricio; Cortes, Priscilla; Bravo-Zehnder, Marcela; Metz, Claudia; Feuerhake, Teo; Romero, Diego, V; Carlos Roa, Juan; Montecinos, Viviana; Soza, Andrea; Gonzalez, AlfonsoEpithelial cells can acquire invasive and tumorigenic capabilities through epithelial-mesenchymal- transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective beta 1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin-Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by alpha 5 beta 1 integrin binding. Under subconfluent conditions, Gal-8-overexpressing MDCK cells (MDCK-Gal-8(H)) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased beta-catenin activity. Changes related to migration/invasion included higher expression of alpha 5 beta 1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8-stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and beta 1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8(H) cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties.
- ItemNucleotide P2Y1 receptor regulates EGF receptor mitogenic signaling and expression in epithelial cells(2007) Buvinic, Sonja; Bravo-Zehnder, Marcela; Boyer, Jose Luis; Huidobro-Toro, Juan Pablo; Gonzalez, AlfonsoEpidermal growth factor receptor ( EGFR) function is transregulated by a variety of stimuli, including agonists of certain G-protein-coupled receptors (GPCRs). One of the most ubiquitous GPCRs is the P2Y(1) receptor (P2RY1, hereafter referred to as P2Y(1)R) for extracellular nucleotides, mainly ADP. Here, we show in tumoral HeLa cells and normal FRT epithelial cells that P2Y(1)R broadcasts mitogenic signals by transactivating the EGFR. The pathway involves PKC, Src and cell surface metalloproteases. Stimulation of P2Y(1)R for as little as 1560 minutes triggers mitogenesis, mirroring the half-life of extracellular ADP. Apyrase degradation of extracellular nucleotides and drug inhibition of P2Y(1)R, both reduced basal cell proliferation of HeLa and FRT cells, but not MDCK cells, which do not express P2Y(1)R. Thus, cell-released nucleotides constitute strong mitogenic stimuli, which act via P2Y(1)R. Strikingly, MDCK cells ectopically expressing P2Y(1)R display a highly proliferative phenotype that depends on EGFR activity associated with an increased level of EGFR, thus disclosing a novel aspect of GPCR-mediated regulation of EGFR function. These results highlight a role of P2Y(1)R in EGFR-dependent epithelial cell proliferation. P2Y(1)R could potentially mediate both trophic stimuli of basally released nucleotides and first-line mitogenic stimulation upon tissue damage. It could also contribute to carcinogenesis and serve as target for antitumor therapies.