Browsing by Author "Bueno, Susan M."
Now showing 1 - 20 of 34
Results Per Page
Sort Options
- ItemA Booster Dose of CoronaVac Increases Neutralizing Antibodies and T Cells that Recognize Delta and Omicron Variants of Concern(2022) Schultz, Barbara M.; Melo-Gonzalez, Felipe; Duarte, Luisa F.; Galvez, Nicolas M. S.; Pacheco, Gaspar A.; Soto, Jorge A.; Berrios-Rojas, Roslye, V; Gonzalez, Liliana A.; Moreno-Tapia, Daniela; Rivera-Perez, Daniela; Rios, Mariana; Vazquez, Yaneisi; Hoppe-Elsholz, Guillermo; Andrade-Parra, Catalina A.; Vallejos, Omar P.; Pina-Iturbe, Alejandro; Iturriaga, Carolina; Urzua, Marcela; Navarrete, Maria S.; Rojas, Alvaro; Fasce, Rodrigo; Fernandez, Jorge; Mora, Judith; Ramirez, Eugenio; Gaete-Argel, Aracelly; Acevedo, Monica; Valiente-Echeverria, Fernando; Soto-Rifo, Ricardo; Weiskopf, Daniela; Grifoni, Alba; Sette, Alessandro; Zeng, Gang; Meng, Weining; Gonzalez-Aramundiz, Jose, V; Gonzalez, Pablo A.; Abarca, Katia; Kalergis, Alexis M.; Bueno, Susan M.CoronaVac is an inactivated SARS-CoV-2 vaccine approved by the World Health Organization (WHO). Previous studies reported increased levels of neutralizing antibodies and specific T cells 2 and 4 weeks after two doses of CoronaVac; these levels were significantly reduced at 6 to 8 months after the two doses. Here, we report the effect of a booster dose of CoronaVac on the anti-SARS-CoV-2 immune response generated against the variants of concern (VOCs), Delta and Omicron, in adults participating in a phase III clinical trial in Chile. Volunteers immunized with two doses of CoronaVac in a 4-week interval received a booster dose of the same vaccine between 24 and 30 weeks after the second dose. Neutralization capacities and T cell activation against VOCs Delta and Omicron were assessed 4 weeks after the booster dose. We observed a significant increase in neutralizing antibodies 4 weeks after the booster dose. We also observed a rise in anti-SARS-CoV-2-specific CD4(+) T cells over time, and these cells reached a peak 4 weeks after the booster dose. Furthermore, neutralizing antibodies and SARS-CoV-2-specific T cells induced by the booster showed activity against VOCs Delta and Omicron. Our results show that a booster dose of CoronaVac increases adults' humoral and cellular anti-SARS-CoV-2 immune responses. In addition, immunity induced by a booster dose of CoronaVac is active against VOCs, suggesting adequate protection. IMPORTANCE CoronaVac is an inactivated vaccine against SARS-CoV-2 that has been approved by WHO for emergency use. Phase III clinical trials are in progress in several countries, including China, Brazil, Turkey, and Chile, and have shown safety and immunogenicity after two doses of the vaccine. This report characterizes immune responses induced by two doses of CoronaVac followed by a booster dose 5 months after the second dose in healthy Chilean adults. The data reported here show that a booster dose increased the immune responses against SARS-CoV-2, enhancing levels of neutralizing antibodies against the ancestral strain and VOCs. Similarly, anti-SARS-CoV-2 CD4(+) T cell responses were increased following the booster dose. In contrast, levels of gamma interferon secretion and T cell activation against the VOCs Delta and Omicron were not significantly different from those for the ancestral strain. Therefore, a third dose of CoronaVac in a homologous vaccination schedule improves its immunogenicity in healthy volunteers.
- ItemA molecular perspective for the development of antibodies against the human respiratory syncytial virus(2024) Loaiza, Ricardo A.; Ramirez, Robinson A.; Sepulveda-Alfaro, Javiera; Ramirez, Mario A.; Andrade, Catalina A.; Soto, Jorge A.; Gonzalez, Pablo A.; Bueno, Susan M.; Kalergis, Alexis M.The human respiratory syncytial virus (hRSV) is the leading etiologic agent causing respiratory infections in infants, children, older adults, and patients with comorbidities. Sixty-seven years have passed since the discovery of hRSV, and only a few successful mitigation or treatment tools have been developed against this virus. One of these is immunotherapy with monoclonal antibodies against structural proteins of the virus, such as Palivizumab, the first prophylactic approach approved by the Food and Drug Administration (FDA) of the USA. In this article, we discuss different strategies for the prevention and treatment of hRSV infection, focusing on the molecular mechanisms against each target that underly the rational design of antibodies against hRSV. At the same time, we describe the latest results regarding currently approved therapies against hRSV and the challenges associated with developing new candidates.
- ItemA single, low dose of a cGMP recombinant BCG vaccine elicits protective T cell immunity against the human respiratory syncytial virus infection and prevents lung pathology in. mice(2017) Cespedes, Pablo F.; Rey-Jurado, Emma; Espinoza, Janyra A.; Rivera, Claudia A.; Canedo-Marroquin, Gisela; Bueno, Susan M.; Kalergis, Alexis M.Human respiratory syncytial virus (hRSV) is a major health burden worldwide, causing the majority of hospitalizations in children under two years old due to bronchiolitis and pneumonia. HRSV causes year-to-year outbreaks of disease, which also affects the elderly and immunocompromised adults. Furthermore, both hRSV morbidity and epidemics are explained by a consistently high rate of re infections that take place throughout the patient life. Although significant efforts have been invested worldwide, currently there are no licensed vaccines to prevent hRSV infection. Here, we describe that a recombinant Bacillus Calmette-Guerin (BCG) vaccine expressing the nucleoprotein (N) of hRSV formulated under current good manufacture practices (cGMP rBCG-N-hRSV) confers protective immunity to the virus in mice. Our results show that a single dose of the GMP rBCG-N-hRSV vaccine retains its capacity to protect mice against a challenge with a disease-causing infection of 1 x 10(7) plaque -forming units (PFUs) of the hRSV A2 clinical strain 13018-8. Compared to unimmunized infected controls, vaccinated mice displayed reduced weight loss and less infiltration of neutrophils within the airways, as well as reduced viral loads in bronchoalveolar lavages, parameters that are characteristic of hRSV infection in mice. Also, ex vivo re-stimulation of splenic T cells at 28 days post-immunization activated a repertoire of T cells secreting IFN-gamma and IL-17, which further suggest that the rBCG-N-hRSV vaccine induced a mixed, CD8(+) and cD4(+) T cell response capable of both restraining viral spread and preventing damage of the lungs. All these features support the notion that rBCG-N-hRSV is a promising candidate vaccine to be used in humans to prevent the disease caused by hRSV in the susceptible population. (C) 2016 Elsevier Ltd. All rights reserved.
- ItemAltered Chemokine Receptor Expression in Papillary Thyroid Cancer(MARY ANN LIEBERT, INC, 2009) Gonzalez, Hernan E.; Leiva, Andrea; Tobar, Hugo; Boehmwald, Karen; Tapia, Grace; Torres, Javiera; Mosso, Lorena M.; Bueno, Susan M.; Gonzalez, Pablo; Kalergis, Alexis M.; Riedel, Claudia A.Background: Papillary thyroid cancer (PTC), the most prevalent type of differentiated thyroid carcinoma, displays a strikingly high frequency of lymph node metastasis (LNM). Recent data suggest that chemokines can play an important role in promoting tumor progression and metastatic migration of tumor cells. Here we have evaluated whether PTC tissues express a different pattern of chemokine receptors and if the expression of these receptors correlates with LNM.
- ItemAsymptomatic herpes simplex virus brain infection elicits cellular senescence phenotypes in the central nervous system of mice suffering multiple sclerosis-like disease(2024) Duarte, Luisa F.; Villalobos, Veronica; Farias, Monica A.; Rangel-Ramirez, Ma. Andreina; Gonzalez-Madrid, Enrique; Navarro, Areli J.; Carbone-Schellman, Javier; Dominguez, Angelica; Alvarez, Alejandra; Riedel, Claudia A.; Bueno, Susan M.; Kalergis, Alexis M.; Caceres, Monica; Gonzalez, Pablo A.Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.
- ItemCharacterization of the humoral and cellular immunity induced by a recombinant BCG vaccine for the respiratory syncytial virus in healthy adults(2023) Pacheco, Gaspar A.; Andrade, Catalina A.; Galvez, Nicolas M. S.; Vazquez, Yaneisi; Rodriguez-Guilarte, Linmar; Abarca, Katia; Gonzalez, Pablo A.; Bueno, Susan M.; Kalergis, Alexis M.IntroductionThe human respiratory syncytial virus (hRSV) is responsible for most respiratory tract infections in infants. Even though currently there are no approved hRSV vaccines for newborns or infants, several candidates are being developed. rBCG-N-hRSV is a vaccine candidate previously shown to be safe in a phase I clinical trial in adults (clinicaltrials.gov identifier #NCT03213405). Here, secondary immunogenicity analyses were performed on these samples. MethodsPBMCs isolated from immunized volunteers were stimulated with hRSV or mycobacterial antigens to evaluate cytokines and cytotoxic T cell-derived molecules and the expansion of memory T cell subsets. Complement C1q binding and IgG subclass composition of serum antibodies were assessed. ResultsCompared to levels detected prior to vaccination, perforin-, granzyme B-, and IFN-& gamma;-producing PBMCs responding to stimulus increased after immunization, along with their effector memory response. N-hRSV- and mycobacterial-specific antibodies from rBCG-N-hRSV-immunized subjects bound C1q. ConclusionImmunization with rBCG-N-hRSV induces cellular and humoral immune responses, supporting that rBCG-N-hRSV is immunogenic and safe in healthy individuals.
- ItemCo-administration of recombinant BCG and SARS-CoV-2 proteins leads to robust antiviral immunity(2024) Ramirez, Mario A.; Loaiza, Ricardo A.; Martinez-Balboa, Yohana; Bruneau, Nicole; Ramirez, Eugenio; Gonzalez, Pablo A.; Bueno, Susan M.; Kalergis, Alexis M.SARS-CoV-2 is the causative virus of COVID-19, which has been responsible for millions of deaths worldwide since its discovery. After its emergence, several variants have been identified that challenge the efficacy of the available vaccines. Previously, we generated and evaluated a vaccine based on a recombinant Bacillus Calmette-Gu & eacute;rin (rBCG) expressing the nucleoprotein (N) of SARS-CoV-2 (rBCG-N-SARS-CoV-2). This protein is a highly immunogenic antigen and well conserved among variants. Here, we tested the administration of this vaccine with recombinant N and viral Spike proteins (S), or Receptor Binding Domain (RBD-Omicron variant), plus a booster with the recombinant proteins only, as a novel and effective strategy to protect against SARS-CoV-2 variants. Methods: BALB/c mice were immunized with rBCG-N-SARS-CoV-2 and recombinant SARS-CoV-2 proteins in Alum adjuvant, followed by a booster with recombinant proteins to assess the safety and virus-specific cellular and humoral immune responses against SARS-CoV-2 antigens. Results: Immunization with rBCG-N-SARS-CoV-2 + recombinant proteins as a vaccine was safe and promoted the activation of CD4(+) and CD8(+) T cells that recognize SARS-CoV-2 N, S, and RBD antigens. These cells were able to secrete cytokines with an antiviral profile. This immunization strategy also induced robust titers of specific antibodies against N, S, and RBD and neutralizing antibodies of SARS-CoV-2. Conclusions: Co-administration of the rBCG-N-SARS-CoV-2 vaccine with recombinant SARS-CoV-2 proteins could be an effective alternative to control particular SARS-CoV-2 variants. Due to its safety and capacity to induce virus-specific immune responses, we believe the rBCG-N-SARS-CoV-2 + Proteins vaccine could be an attractive candidate to protect against this virus, especially in newborns.
- ItemContribution of Two-Dose Vaccination Toward the Reduction of COVID-19 Cases, ICU Hospitalizations and Deaths in Chile Assessed Through Explanatory Generalized Additive Models for Location, Scale, and Shape(2022) Reyes, Humberto; Diethelm-Varela, Benjamin; Mendez Vejar, Constanza; Rebolledo-Zelada, Diego; Lillo-Dapremont, Bastián; Muñoz, Sergio R.; Bueno, Susan M.; González, Pablo A.; Kalergis, AlexisObjectives: To assess the impact of the initial two-dose-schedule mass vaccination campaign in Chile toward reducing adverse epidemiological outcomes due to SARS-CoV-2 infection. Methods: Publicly available epidemiological data ranging from 3 February 2021 to 30 September 2021 were used to construct GAMLSS models that explain the beneficial effect of up to two doses of vaccination on the following COVID-19-related outcomes: new cases per day, daily active cases, daily occupied ICU beds and daily deaths. Results: Administered first and second vaccine doses, and the statistical interaction between the two, are strong, statistically significant predictors for COVID-19-related new cases per day (R2 = 0.847), daily active cases (R2 = 0.903), ICU hospitalizations (R2 = 0.767), and deaths (R2 = 0.827). Conclusion: Our models stress the importance of completing vaccination schedules to reduce the adverse outcomes during the pandemic. Future work will continue to assess the influence of vaccines, including booster doses, as the pandemic progresses, and new variants emerge. Policy Implications: This work highlights the importance of attaining full (two-dose) vaccination status and reinforces the notion that a second dose provides increased non-additive protection. The trends we observed may also support the inclusion of booster doses in vaccination plans. These insights could contribute to guiding other countries in their vaccination campaigns.
- ItemDeletion of a prophage-like element causes attenuation of Salmonella enterica serovar Enteritidis and promotes protective immunity(2010) Araya, Daniela V.; Quiroz, Tania S.; Tobar, Hugo E.; Lizana, Rodrigo J.; Quezada, Carolina P.; Santiviago, Carlos A.; Riedel, Claudia A.; Kalergis, Alexis M.; Bueno, Susan M.Salmonella enterica serovar Enteritidis (S Enteritidis) is a wide host range serovar belonging to the S. enterica genus. Worldwide, it is one of the most frequent causes of food borne disease Similar to S. Typhimurium, some virulence genes of S. Enteritidis are located in pathogenicity islands and prophages. In this study we have generated a mutant strain of S. Enteritidis lacking a prophage-like element, denominated phi SE12. The resulting mutant strain was attenuated and promoted protective immunity in infected mice Although S Enteritidis strains lacking the complete prophage phi SE12 remained capable of surviving inside phagocytic cells, they showed a significantly reduced capacity to colonize internal organs and failed to cause lethal disease in mice. Consistent with these data, infection with S Enteritidis strains lacking prophage phi SE12 promoted the production of anti-Salmonella IgG antibodies and led to protection against a challenge with virulent strains of S Enteritidis. These results suggest that strains lacking this prophage can induce a protective immunity in mice and be considered as potential attenuated vaccines against S Enteritidis. (C) 2010 Elsevier Ltd All rights reserved
- ItemDifferences in the immune response elicited by two immunization schedules with an inactivated SARS-CoV-2 vaccine in a randomized phase 3 clinical trial(2022) Galvez, Nicolas M. S.; Pacheco, Gaspar A.; Schultz, Barbara M.; Melo-Gonzalez, Felipe; Soto, Jorge A.; Duarte, Luisa F.; Gonzalez, Liliana A.; Rivera-Perez, Daniela; Rios, Mariana; Berrios, Roslye, V; Vazquez, Yaneisi; Moreno-Tapia, Daniela; Vallejos, Omar P.; Andrade, Catalina A.; Hoppe-Elsholz, Guillermo; Iturriaga, Carolina; Urzua, Marcela; Navarrete, Maria S.; Rojas, Alvaro; Fasce, Rodrigo; Fernandez, Jorge; Mora, Judith; Ramirez, Eugenio; Gaete-Argel, Aracelly; Acevedo, Monica L.; Valiente-Echeverria, Fernando; Soto-Rifo, Ricardo; Weiskopf, Daniela; Grifoni, Alba; Sette, Alessandro; Zeng, Gang; Meng, Weining; Gonzalez-Aramundiz, Jose, V; Johnson, Marina; Goldblatt, David; Gonzalez, Pablo A.; Abarca, Katia; Bueno, Susan M.; Kalergis, Alexis M.Background: The development of vaccines to control the coronavirus disease 2019 (COVID-19) pandemic progression is a worldwide priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile. Methods: This study is a randomized, multicenter, and controlled phase 3 trial in healthy Chilean adults aged & GE;18 years. Volunteers received two doses of CoronaVac separated by 2 (0-14 schedule) or 4 weeks (0-28 schedule); 2302 volunteers were enrolled, 440 were part of the immunogenicity arm, and blood samples were obtained at different times. Samples from a single center are reported. Humoral immune responses were evaluated by measuring the neutralizing capacities of circulating antibodies. Cellular immune responses were assessed by ELISPOT and flow cytometry. Correlation matrixes were performed to evaluate correlations in the data measured. Results: Both schedules exhibited robust neutralizing capacities with the response induced by the 0-28 schedule being better. No differences were found in the concentration of antibodies against the virus and different variants of concern (VOCs) between schedules. Stimulation of peripheral blood mononuclear cells (PBMCs) with Mega pools of Peptides (MPs) induced the secretion of interferon (IFN)-gamma and the expression of activation induced markers in CD4(+) T cells for both schedules. Correlation matrixes showed strong correlations between neutralizing antibodies and IFN-gamma secretion. Conclusions: Immunization with CoronaVac in Chilean adults promotes robust cellular and humoral immune responses. The 0-28 schedule induced a stronger humoral immune response than the 0-14 schedule.
- ItemEfficient Lung Recruitment of Respiratory Syncytial Virus-Specific Th1 Cells Induced by Recombinant Bacillus Calmette-Guerin Promotes Virus Clearance and Protects from Infection(AMER ASSOC IMMUNOLOGISTS, 2010) Cautivo, Kelly M.; Bueno, Susan M.; Cortes, Claudia M.; Wozniak, Aniela; Riedel, Claudia A.; Kalergis, Alexis M.Infection by the respiratory syncytial virus (RSV) can cause extensive inflammation and lung damage in susceptible hosts due to a Th2-biased immune response. Such a deleterious inflammatory response can be enhanced by immunization with formalin- or UV-inactivated RSV, as well as with vaccinia virus expressing the RSV-G protein. Recently, we have shown that vaccination with rBCG-expressing RSV Ags can prevent the disease in the mouse. To further understand the immunological mechanisms responsible for protection against RSV, we have characterized the T cell populations contributing to virus clearance in mice immunized with this BCG-based vaccine. We found that both CD4(+) and CD8(+) T cells were recruited significantly earlier to the lungs of infected mice that were previously vaccinated. Furthermore, we observed that simultaneous adoptive transfer of CD8(+) and CD4(+) RSV-specific T cells from vaccinated mice was required to confer protection against virus infection in naive recipients. In addition, CD4(+) T cells induced by vaccination released IFN-gamma after RSV challenge, indicating that protection is mediated by a Th1 immune response. These data suggest that vaccination with rBCG-expressing RSV Ags can induce a specific effector/memory Th1 immune response consisting on CD4(+) and CD8(+) T cells, both necessary for a fully protective response against RSV. These results support the notion that an effective induction of Th1 T cell immunity against RSV during childhood could counteract the unbalanced Th2-like immune response triggered by the natural RSV infection. The Journal of Immunology, 2010, 185: 7633-7645.
- ItemExcision of an Unstable Pathogenicity Island in Salmonella enterica Serovar Enteritidis Is Induced during Infection of Phagocytic Cells(PUBLIC LIBRARY SCIENCE, 2011) Quiroz, Tania S.; Nieto, Pamela A.; Tobar, Hugo E.; Salazar Echegarai, Francisco J.; Lizana, Rodrigo J.; Quezada, Carolina P.; Santiviago, Carlos A.; Araya, Daniela V.; Riedel, Claudia A.; Kalergis, Alexis M.; Bueno, Susan M.The availability of the complete genome sequence of several Salmonella enterica serovars has revealed the presence of unstable genetic elements in these bacteria, such as pathogenicity islands and prophages. This is the case of Salmonella enterica serovar Enteritidis (S. Enteritidis), a bacterium that causes gastroenteritis in humans and systemic infection in mice. The whole genome sequence analysis for S. Enteritidis unveiled the presence of several genetic regions that are absent in other Salmonella serovars. These regions have been denominated "regions of difference'' (ROD). In this study we show that ROD21, one of such regions, behaves as an unstable pathogenicity island. We observed that ROD21 undergoes spontaneous excision by two independent recombination events, either under laboratory growth conditions or during infection of murine cells. Importantly, we also found that one type of excision occurred at higher rates when S. Enteritidis was residing inside murine phagocytic cells. These data suggest that ROD21 is an unstable pathogenicity island, whose frequency of excision depends on the environmental conditions found inside phagocytic cells.
- ItemGestational hypothyroxinemia induces ASD-like phenotypes in behavior, proinflammatory markers, and glutamatergic protein expression in mouse offspring of both sexes(2024) Gonzalez-Madrid, Enrique; Rangel-Ramirez, Ma. Andreina; Opazo, Maria C.; Mendez, Luis; Bohmwald, Karen; Bueno, Susan M.; Gonzalez, Pablo A.; Kalergis, Alexis M.; Riedel, Claudia A.Background The prevalence of autism spectrum disorder (ASD) has significantly risen in the past three decades, prompting researchers to explore the potential contributions of environmental factors during pregnancy to ASD development. One such factor of interest is gestational hypothyroxinemia (HTX), a frequent condition in pregnancy associated with cognitive impairments in the offspring. While retrospective human studies have linked gestational HTX to autistic traits, the cellular and molecular mechanisms underlying the development of ASD-like phenotypes remain poorly understood. This study used a mouse model of gestational HTX to evaluate ASD-like phenotypes in the offspring.Methods To induce gestational HTX, pregnant mice were treated with 2-mercapto-1-methylimidazole (MMI), a thyroid hormones synthesis inhibitor, in the tap-drinking water from embryonic days (E) 10 to E14. A separate group received MMI along with a daily subcutaneous injection of T4, while the control group received regular tap water during the entire pregnancy. Female and male offspring underwent assessments for repetitive, anxious, and social behaviors from postnatal day (P) 55 to P64. On P65, mice were euthanized for the evaluation of ASD-related inflammatory markers in blood, spleen, and specific brain regions. Additionally, the expression of glutamatergic proteins (NLGN3 and HOMER1) was analyzed in the prefrontal cortex and hippocampus.Results The HTX-offspring exhibited anxious-like behavior, a subordinate state, and impaired social interactions. Subsequently, both female and male HTX-offspring displayed elevated proinflammatory cytokines in blood, including IL-1 beta, IL-6, IL-17A, and TNF-alpha, while only males showed reduced levels of IL-10. The spleen of HTX-offspring of both sexes showed increased Th17/Treg ratio and M1-like macrophages. In the prefrontal cortex and hippocampus of male HTX-offspring, elevated levels of IL-17A and reduced IL-10 were observed, accompanied by increased expression of hippocampal NLGN3 and HOMER1. All these observations were compared to those observed in the Control-offspring. Notably, the supplementation with T4 during the MMI treatment prevents the development of the observed phenotypes. Correlation analysis revealed an association between maternal T4 levels and specific ASD-like outcomes.Discussion This study validates human observations, demonstrating for the first time that gestational HTX induces ASD-like phenotypes in the offspring, highlighting the need of monitoring thyroid function during pregnancy.
- ItemHuman metapneumovirus respiratory infection affects both innate and adaptive intestinal immunity(2024) Sepulveda-Alfaro, Javiera; Catalan, Eduardo A.; Vallejos, Omar P.; Ramos-Tapia, Ignacio; Madrid-Munoz, Cristobal; Mendoza-Leon, Maria J.; Suazo, Isidora D.; Rivera-Asin, Elizabeth; Silva, Pedro H.; Alvarez-Mardones, Oscar; Castillo-Godoy, Daniela P.; Riedel, Claudia A.; Schinnerling, Katina; Ugalde, Juan A.; Soto, Jorge A.; Bueno, Susan M.; Kalergis, Alexis M.; Melo-Gonzalez, FelipeIntroduction Respiratory infections are one of the leading causes of morbidity and mortality worldwide, mainly in children, immunocompromised people, and the elderly. Several respiratory viruses can induce intestinal inflammation and alterations in intestinal microbiota composition. Human metapneumovirus (HMPV) is one of the major respiratory viruses contributing to infant mortality in children under 5 years of age worldwide, and the effect of this infection at the gut level has not been studied.Methods Here, we evaluated the distal effects of HMPV infection on intestinal microbiota and inflammation in a murine model, analyzing several post-infection times (days 1, 3, and 5). Six to eight-week-old C57BL/6 mice were infected intranasally with HMPV, and mice inoculated with a non-infectious supernatant (Mock) were used as a control group.Results We did not detect HMPV viral load in the intestine, but we observed significant changes in the transcription of IFN-gamma in the colon, analyzed by qPCR, at day 1 post-infection as compared to the control group. Furthermore, we analyzed the frequencies of different innate and adaptive immune cells in the colonic lamina propria, using flow cytometry. The frequency of monocyte populations was altered in the colon of HMPV -infected mice at days 1 and 3, with no significant difference from control mice at day 5 post-infection. Moreover, colonic CD8+ T cells and memory precursor effector CD8+ T cells were significantly increased in HMPV-infected mice at day 5, suggesting that HMPV may also alter intestinal adaptive immunity. Additionally, we did not find alterations in antimicrobial peptide expression, the frequency of colonic IgA+ plasma cells, and levels of fecal IgA. Some minor alterations in the fecal microbiota composition of HMPV -infected mice were detected using 16s rRNA sequencing. However, no significant differences were found in beta-diversity and relative abundance at the genus level.Discussion To our knowledge, this is the first report describing the alterations in intestinal immunity following respiratory infection with HMPV infection. These effects do not seem to be mediated by direct viral infection in the intestinal tract. Our results indicate that HMPV can affect colonic innate and adaptive immunity but does not significantly alter the microbiota composition, and further research is required to understand the mechanisms inducing these distal effects in the intestine.
- ItemHypothyroidism in the Adult Rat Causes Incremental Changes in Brain-Derived Neurotrophic Factor, Neuronal and Astrocyte Apoptosis, Gliosis, and Deterioration of Postsynaptic Density(MARY ANN LIEBERT, INC, 2012) Cortes, Claudia; Eugenin, Eliseo; Aliaga, Esteban; Carreno, Leandro J.; Bueno, Susan M.; Gonzalez, Pablo A.; Gayol, Silvina; Naranjo, David; Noches, Veronica; Marassi, Michelle P.; Rosenthal, Doris; Jadue, Cindy; Ibarra, Paula; Keitel, Cecilia; Wohllk, Nelson; Court, Felipe; Kalergis, Alexis M.; Riedel, Claudia A.Background: Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T-4) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism.
- ItemIdentification of biomarkers for disease severity in nasopharyngeal secretions of infants with upper or lower respiratory tract viral infectionsBertrand N., Pablo; Vazquez, Yaneisi; Beckhaus, Andrea A.; González Carreño, Liliana Andrea; Contreras Sepúlveda, Ana María; Ferrés Garrido, Marcela Viviana; Padilla Pérez, Oslando; Riedel, Claudia A.; Kalergis Parra, Alexis Mikes; Bueno, Susan M.Lower respiratory tract infections (LRTIs) produced by viruses are the most frequent cause of morbidity and mortality in children younger than 5 years of age. The immune response triggered by viral infection can induce a strong inflammation in the airways and cytokines could be considered as biomarkers for disease severity as these molecules modulate the inflammatory response that defines the outcome of patients. Aiming to predict the severity of disease during respiratory tract infections, we conducted a 1-year follow-up observational study in infants who presented upper or lower respiratory tract infections caused by seasonal respiratory viruses. At the time of enrollment, nasopharyngeal swabs (NPS) were obtained from infants to measure mRNA expression and protein levels of IL-3, IL-8, IL-33, and thymic stromal lymphopoietin. While all cytokines significantly increased their protein levels in infants with upper and lower respiratory tract infections as compared to control infants, IL-33 and IL-8 showed a significant increase in respiratory syncytial virus (RSV)-infected patients with LRTI as compared to patients with upper respiratory tract infection. We also found higher viral loads of RSV-positive samples with a greater IL-8 response at the beginning of the symptoms. Data obtained in this study suggest that both IL-8 and IL-33 could be used as biomarkers for clinical severity for infants suffering from LRTIs caused by the RSV.
- ItemIL-10-Dependent Amelioration of Chronic Inflammatory Disease by Microdose Subcutaneous Delivery of a Prototypic Immunoregulatory Small Molecule(2021) Tabares-Guevara, Jorge H.; Jaramillo, Julio C.; Ospina-Quintero, Laura; Piedrahita-Ochoa, Christian A.; Garcia-Valencia, Natalia; Bautista-Erazo, David E.; Caro-Gomez, Erika; Covian, Camila; Retamal-Diaz, Angello; Duarte, Luisa F.; Gonzalez, Pablo A.; Bueno, Susan M.; Riedel, Claudia A.; Kalergis, Alexis M.; Ramirez-Pineda, Jose R.One of the interventional strategies to reestablish the immune effector/regulatory balance, that is typically altered in chronic inflammatory diseases (CID), is the reinforcement of endogenous immunomodulatory pathways as the one triggered by interleukin (IL)-10. In a recent work, we demonstrated that the subcutaneous (sc) administration of an IL-10/Treg-inducing small molecule-based formulation, using a repetitive microdose (REMID) treatment strategy to preferentially direct the effects to the regional immune system, delays the progression of atherosclerosis. Here we investigated whether the same approach using other IL-10-inducing small molecule, such as the safe, inexpensive, and widely available polyphenol curcumin, could induce a similar protective effect in two different CID models. We found that, in apolipoprotein E deficient mice, sc treatment with curcumin following the REMID strategy induced atheroprotection that was not consequence of its direct systemic lipid-modifying or antioxidant activity, but instead paralleled immunomodulatory effects, such as reduced proatherogenic IFN gamma/TNF alpha-producing cells and increased atheroprotective FOXP3(+) Tregs and IL-10-producing dendritic and B cells. Remarkably, when a similar strategy was used in the neuroinflammatory model of experimental autoimmune encephalomyelitis (EAE), significant clinical and histopathological protective effects were evidenced, and these were related to an improved effector/regulatory cytokine balance in restimulated splenocytes. The essential role of curcumin-induced IL-10 for neuroprotection was confirmed by the complete abrogation of the clinical effects in IL-10-deficient mice. Finally, the translational therapeutic prospection of this strategy was evidenced by the neuroprotection observed in mice starting the treatment one week after disease triggering. Collectively, results demonstrate the power of a simple natural IL-10-inducing small molecule to tackle chronic inflammation, when its classical systemic and direct pharmacological view is shifted towards the targeting of regional immune cells, in order to rationally harness its immunopharmacological potential. This shift implies that many well-known IL-10-inducing small molecules could be easily reformulated and repurposed to develop safe, innovative, and accessible immune-based interventions for CID.
- ItemImmunization with a Recombinant Bacillus Calmette-Guerin Strain Confers Protective Th1 Immunity against the Human Metapneumovirus(2014) Palavecino, Christian E.; Cespedes, Pablo F.; Gomez, Roberto S.; Kalergis, Alexis M.; Bueno, Susan M.Along with the human respiratory syncytial virus (hRSV), the human metapneumovirus (hMPV) is one of the leading causes of childhood hospitalization and a major health burden worldwide. Unfortunately, owing to an inefficient immunological memory, hMPV infection provides limited immune protection against reinfection. Furthermore, hMPV can induce an inadequate Th2 type immune response that causes severe lung inflammation, leading to airway obstruction. Similar to hRSV, it is likely that an effective clearance of hMPV would require a balanced Th1 type immunity by the host, involving the activation of IFN-gamma-secreting T cells. A recognized inducer of Th1 immunity is Mycobacterium bovis bacillus Calmette-Guerin (BCG), which has been used in newborns for many decades and in several countries as a tuberculosis vaccine. We have previously shown that immunization with BCG strains expressing hRSV Ags can induce an efficient immune response that protects against this virus. In this study, we show that immunization with rBCG strains expressing the phosphoprotein from hMPV also can induce protective Th1 immunity. Mice immunized with rBCG were protected against weight loss, airway inflammation, and viral replication in the lungs after hMPV infection. Our rBCG vaccine also induced the activation of hMPV-specific T cells producing IFN-gamma and IL-2, which could protect from hMPV infection when transferred to recipient mice. These data strongly support the notion that rBCG induces protective Th1 immunity and could be considered as an efficient vaccine against hMPV.
- ItemImmunogenicity and Safety of a Quadrivalent Influenza Vaccine in Population Aged 3 Years and Older in Chile and the Philippines: A Phase 3, Non-Inferiority, Double-Blind, Randomized Controlled Clinical Trial(2024) Yang, Wanqi; Gonzalez, Pablo A.; Xin, Qianqian; De Los Reyes, Mari Rose; Villalobos, Ralph Elvi; Borja-Tabora, Charissa Fay Corazon; Bermal, Nancy Nazaire; Kalergis, Alexis M.; Yu, Dan; Wu, Wenbin; Bueno, Susan M.; Huo, Liqun; Calvo, Mario; Zeng, Gang; Li, JingObjectives: In this study, we aimed to evaluate the non-inferiority of a quadrivalent influenza vaccine (QIV) developed by Sinovac Biotech Co., Ltd. (Sinovac, Beijing, China) by comparing its immunogenicity and safety with a comparator QIV (Vaxigrip Tetra (R)) in a population aged 3 years and older in Chile and the Philippines. Methods: A phase 3, non-inferiority, double-blind, randomized controlled, multicenter clinical trial was conducted in the southern hemisphere (SH) 2023 influenza season. Participants aged >= 3 years old with stable health were randomized 1:1 to receive either Sinovac QIV or comparator QIV. The co-primary outcomes were immunological non-inferiority for Sinovac QIV versus the comparator against each strain contained in the vaccines in terms of seroconversion rates (SCRs) and geometric mean titers (GMTs) of hemagglutination inhibition (HI) antibodies 28 days after final vaccination. Results: A total of 2039 participants were vaccinated (1019 Sinovac QIV; 1020 comparator QIV). Sinovac QIV induced non-inferior immune responses to all four strains as compared to comparator QIV, with slightly higher GMTs than those of comparator QIV: GMT ratios (lower limit 95% confidence interval (CI)) were 1.8 (1.6) for A(H1N1), 1.4 (1.3) for A (H3N2), 1.3 (1.1) for B Victoria and 1.2 (1.1) for B Yamagata; observed seroconversion rate differences (lower limit 95% CI) were 9.6% (6.7) for A(H1N1), 7.0% (3.5) for A(H3N2), 2.4% (-0.03) for B Victoria and 6.8% (3.0) for B Yamagata. Adverse reactions were similar across the two groups and no vaccine-related serious adverse events were reported. Conclusions: The immunogenicity of Sinovac QIV was non-inferior to that of the comparator QIV in these populations aged 3 years and older, and safety was comparable.
- ItemImpact of homologous and heterologous boosters in neutralizing antibodies titers against SARS-CoV-2 Omicron in solid-organ transplant recipients(2023) Gaete-Argel, Aracelly; Saavedra-Alarcon, Vicente; Saure, Denis; Alonso-Palomares, Luis; Acevedo, Monica L.; Alarcon, Marion; Bueno, Susan M.; Kalergis, Alexis M.; Soto-Rifo, Ricardo; Valiente-Echeverria, Fernando; Cortes, Claudia P.IntroductionBooster doses of SARS-CoV-2 vaccines improve seroconversion rates in solid organ transplant recipients (SOTRs) but the impact of homologous and heterologous booster doses in neutralizing antibody (NAb) titers and their ability to interfere with the variant of concern Omicron are not well studied. MethodsWe designed a prospective, open-label, observational clinical cohort study. 45 participants received two doses of BNT162b2 or CoronaVac (21-day or 28-day intervals, respectively) followed by a first and second booster with BNT162b2 (5-month apart each) and we analyzed the neutralizing antibody titers against SARSCoV-2 D614G (B.1 lineage) and Omicron (BA.1 lineage). ResultsOur results show that SOTRs receiving an initial two-dose scheme of CoronaVac or BNT162b2 generate lower NAbs titers against the ancestral variant of SARS-CoV-2 when compared with healthy controls. Although these NAb titers were further decreased against the SARS-CoV-2 Omicron, a single BNT162b2 booster in both groups was sufficient to increase NAb titers against the variant of concern. More importantly, this effect was only observed in those participants responding to the first two shots but not in those not responding to the initial vaccination scheme. DiscussionThe data provided here demonstrate the importance of monitoring antibody responses in immunocompromised subjects when planning booster vaccination programs in this risk group.