Browsing by Author "Camu, Esteban"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemAdsorption properties of M-UiO-66 (M = Zr(iv); Hf(iv) or Ce(iv)) with BDC or PDC linker(2024) Gonzalez, Diego; Pazo-Carballo, Cesar; Camu, Esteban; Hidalgo-Rosa, Yoan; Zarate, Ximena; Escalona, Nestor; Schott, EduardoThe increasing CO2 emissions and their direct impact on climate change due to the greenhouse effect are environmental issues that must be solved as soon as possible. Metal-organic frameworks (MOFs) are one class of crystalline adsorbent materials that are thought to have enormous potential in CO2 capture applications. In this research, the effect of changing the metal center between Zr(iv), Ce(iv), and Hf(iv), and the linker between BDC and PDC has been fully studied. Thus, the six UiO-66 isoreticular derivatives have been synthesized and characterized by FTIR, PXRD, TGA, and N2 adsorption. We also report the BET surface area, CO2 adsorption capacities, kinetics, and the adsorption isosteric heat (Q(st)) of the UiO-66 derivatives mentioned family. The CO2 adsorption kinetics were evaluated using pseudo-first order, pseudo-second order, Avrami's kinetic models, and the rate-limiting step with Boyd's film diffusion, interparticle diffusion, and intraparticle diffusion models. The isosteric heats of CO2 adsorption using various MOFs are in the range 20-65 kJ mol(-1) observing differences in adsorption capacities between 1.15 and 4.72 mmol g(-1) at different temperatures due to the electrostatic interactions between CO2 and extra-framework metal ions. The isosteric heat of adsorption calculation in this report, which accounts for the unexpectedly high heat released from Zr-UiO-66-PDC, is finally represented as an increase in the interaction of CO2 with the PDC linker and an increase in Q(st) with defects.
- ItemCONVERSION OF QUINOLINE ON ReS2 CATALYSTS: EFFECT OF THE SUPPORT AND THE ADDITION OF CS2 IN THE FEED(2017) Bassi, Romina; Camu, Esteban; Villarroel, Mirza; Gil-Llambias, Fco. Javier; Garcia-Fierro, J. L.; Escalona, Nestor; Baeza, PatricioThe effect of supports and the addition of CS2 in the feed were studied on hydrodenitrogenation of Quinoline in a continuous flow reactor over ReS2/support catalysts at 300, 325 and 350 degrees C and 3MPa of H-2. The ReS2 supported on TiO2 displayed the highest activity followed by ZrO2, gamma-Al2O3 and SiO2 supports. The activity trend was correlated with the Re dispersion on the support. The effect of the addition of CS2 was increased activity until 2.5 v/v % content. At higher CS2 content the activity decreased due to competitive adsorption between CS2 and Quinoline on the active sites.
- ItemEnhancing energy recovery of wastewater treatment plants through hydrothermal liquefaction(2023) Cabrera, Daniela V.; Barria, David A.; Camu, Esteban; Celis, Crispin; Tester, Jefferson W.; Labatut, Rodrigo A.Sewage sludge (SS) management constitutes both a challenge and an opportunity for the sustainability of wastewater treatment plants (WWTPs). Standalone anaerobic digestion (AD) stabilizes the biodegradable organics contained in SS but recovers only a fraction of the chemical energy stored therein and produces large amounts of un-stabilized sludge. Hydrothermal liquefaction (HTL) coupled with AD can enhance the treatment and energy recovery of SS. Standalone AD was compared against (1) an HTL-AD configuration, with SS as HTL input, and the generated aqueous product (AP) as AD input; and (2), an AD-HTL-AD configuration, with SS as AD input, the digestate as HTL input, and the generated AP as AD input. Both configurations decreased the SS' COD from 27.5 to 0.6 g L-1, while the overall energy recovered was increased up to 2.2-fold relative to conventional SS treatment using only AD. Under the HTL-AD configuration, biocrude yields were higher (i.e., 26.4 vs. 15.8) and the AP generated was more biodegradable (0.78 vs. 0.65), than those obtained under the AD-HTL-AD configuration. Monte Carlo uncertainty analyses confirmed that overall energy recoveries would follow the order AD-HTL-AD > HTL-AD > AD; with energy recoveries (95% confidence) between, 63.5-94.7%, 54.6-91.2%, and 33.2-71.1%, respectively. This study shows that, by implementing HTL as a standalone SS treatment, WWTPs can recover more energy than using AD alone. Furthermore, WWTPs with existing AD would recover additional energy through HTL of the generated digestate, significantly reducing the environmental impacts and costs of conventional solids management.
- ItemNovel Hydrophobic Functionalized UiO-66 Series: Synthesis, Characterization, and Evaluation of Their Structural and Physical-Chemical Properties(2024) Narea, Pilar; Brito, Ivan; Quintero, Yurieth; Camu, EstebanA novel set of four functionalized hydrophobic UiO-66-NHR series were synthesized through postsynthetic procedures, utilizing various benzoyl chlorides and UiO-66-NH2 as starting materials. This synthesis method was carried out by employing p- (1) and o-toluoyl (2), as well as 2- (3) and 4-fluorobenzoyl (4) substituents. The analysis of the resulting compounds was performed using conventional spectroscopic methods such as FT-IR and 1H NMR to quantify the conversion rate into amide. Furthermore, SEM and XPS techniques were employed for morphological and surface analysis. Finally, the evaluation of the chemical stability and contact angle using the sessile drop method was performed to evaluate the technological potential of these compounds for application in aqueous and acidic media (such as selective separation of different metals and wastewater recovery).
- ItemTheoretical and Experimental Study for Cross-Coupling Aldol Condensation over Mono- and Bimetallic UiO-66 Nanocatalysts(2023) Pazo Carballo, César Alexander; Blanco, Elodie; Camu, Esteban; Leiva Campusano, Ángel; Hidalgo-Rosa, Yoan; Zarate, Ximena; Dongil, Ana Belén; Schott Verdugo, Eduardo Enrique; Escalona, NéstorMono- and bimetallic UiO-66 nanocatalysts were synthesized using the solvothermal synthesis method and evaluated in the aldol condensation reaction of benzaldehyde and acetone in a batch reactor. N2 physisorption, thermogravimetric analysis, temperature-programmed desorption of ammonia, X-ray diffraction, field-emission scanning electron microscopy–energy-dispersive X-ray, X-ray photoelectron spectroscopy, potentiometric titration, and Fourier transform infrared were used to characterize the nanocatalysts. The higher activity exhibited by the Zr/Hf-UiO-66 catalyst could be attributed to the lower orbital energy interaction with benzaldehyde, as shown by density functional theory. A synergetic effect is observed for the bimetallic UiO-66 nanocatalyst between Zr and Hf, obtaining a higher reaction rate than the monometallic nanocatalysts. Meanwhile, this antagonistic effect was shown in the bimetallic catalysts between Zr and Ce, which was less active than the monometallic UiO-66 catalyst due to free COOH generated during the synthesis. Finally, the selectivity results showed that incorporating Hf and Ce on Zr-UiO-66 favors benzalacetone formation by cross-coupling condensation of benzaldehyde and acetone at isoconversion conditions.