Browsing by Author "Chellappan, D. K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHybrid molecules based on 1,3,5-triazine as potential therapeutics: A focused review(2020) Prasher, P.; Sharma, M.; Aljabali, Alaa A. A.; Gupta, G.; Negi, P.; Kapoor, D. N.; Singh, I.; Zacconi, Flavia C. M.; Andreoli Pinto, T. de J.; Webba da Silva, M.; Bakshi, H.; Chellappan, D. K.; Tambuwala, M. M.; Dua, K.Majority of the representative drugs customarily interact with multiple targets manifesting unintended side effects. In addition, drug resistance and over expression of the cellular efflux-pumps render certain classes of drugs ineffective. With only a few innovative formulations in development, it is necessary to identify pharmacophores and novel strategies for creating new drugs. The conjugation of dissimilar pharmacophoric moieties to design hybrid molecules with an attractive therapeutic profile is an emerging paradigm in the contemporary drug development regime. The recent decade witnessed the remarkable biological potential of 1,3,5-triazine framework in the development of various chemotherapeutics. The appending of the 1,3,5-triazine nucleus to biologically relevant moieties has delivered exciting results. The present review focuses on 1,3,5-triazine based hybrid molecules in the development of pharmaceuticals.
- ItemRutin-loaded liquid crystalline nanoparticles attenuate oxidative stress in bronchial epithelial cells: a PCR validation(2021) Zacconi, Flavia C. M.; Chellappan, D. K.; Dureja, H.; Dua, K.; Raj Paudel, K. R.; Shastri, M. D.; Mehta, M.; Gulati, M.; Hansbro, P.; Singh, S. K.; Satija, S.; Shukla, S. D.Aim: In the present study, the inhibitory potential of rutin-loaded liquid crystalline nanoparticles (LCNs) on oxidative stress was determined in human bronchial epithelial cells (BEAS-2B) by analysing the expression levels of different antioxidant (NADPH quinine oxidoreductase-1 (NQO1); gamma-glutamyl cysteine synthetase catalytic subunit (GCLC)) and pro-oxidant (NADPH oxidase (Nox)-4; Nox2B) genes. Results: Our findings revealed that the rutin-loaded LCNs inhibited the genes, namely Nox2B and Nox4, which caused oxidative stress. In addition, these nanoparticles demonstrated an upregulation in the expression of the antioxidant genes Gclc and Nqo-1 in a dose-dependent manner. Conclusion: The study indicates the promising potential of rutin-loaded LCNs as an effective treatment strategy in patients with high oxidant loads in various respiratory diseases.