Browsing by Author "Collet, R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemChemical abundances in the multiple sub-giant branch of 47 Tucanae: insights on its faint sub-giant branch component(2016) Marino, A. F.; Milone, A. P.; Casagrande, L.; Collet, R.; Dotter, A.; Johnson, C. I.; Lind, K.; Bedin, L. R.; Jerjen, H.; Aparicio, A.; Sbordone, L.The globular cluster 47 Tuc exhibits a complex sub-giant branch (SGB) with a faint-SGB comprising only about the 10 per cent of the cluster mass and a bright-SGB hosting at least two distinct populations. We present a spectroscopic analysis of 62 SGB stars including 21 faint-SGB stars. We thus provide the first chemical analysis of the intriguing faint-SGB population and compare its abundances with those of the dominant populations. We have inferred abundances of Fe, representative light elements C, N, Na, and Al, alpha elements Mg and Si for individual stars. Oxygen has been obtained by co-adding spectra of stars on different sequences. In addition, we have analysed 12 stars along the two main RGBs of 47 Tuc. Our principal results are (i) star-to-star variations in C/N/Na among RGB and bright-SGB stars; (ii) substantial N and Na enhancements for the minor population corresponding to the faint-SGB; (iii) no high enrichment in C+N+O for faint-SGB stars. Specifically, the C+N+O of the faint-SGB is a factor of 1.1 higher than the bright-SGB, which, considering random (+/- 1.3) plus systematic errors (+/- 0.3), means that their C+N+O is consistent within observational uncertainties. However, a small C+N+O enrichment for the faint-SGB, similar to what predicted on theoretical ground, cannot be excluded. The N and Na enrichment of the faint-SGB qualitatively agrees with this population possibly being He-enhanced, as suggested by theory. The iron abundance of the bright and faint-SGB is the same to a level of similar to 0.10 dex, and no other significant difference for the analysed elements has been detected.
- ItemIron and s-elements abundance variations in NGC 5286: comparison with 'anomalous' globular clusters and Milky Way satellites(2015) Marino, A. F.; Milone, A. P.; Karakas, A. I.; Casagrande, L.; Yong, D.; Shingles, L.; Da Costa, G.; Norris, J. E.; Stetson, P. B.; Lind, K.; Asplund, M.; Collet, R.; Jerjen, H.; Sbordone, L.; Aparicio, A.; Cassisi, S.We present a high-resolution spectroscopic analysis of 62 red giants in the Milky Way globular cluster (GC) NGC 5286. We have determined abundances of representative light proton-capture, a, Fe-peak and neutron-capture element groups, and combined them with photometry of multiple sequences observed along the colour-magnitude diagram. Our principal results are: (i) a broad, bimodal distribution in s-process element abundance ratios, with two main groups, the s-poor and s-rich groups; (ii) substantial star-to-star Fe variations, with the s-rich stars having higher Fe, e.g. <[Fe/H]>(s-rich) - <[Fe/H]>(s-poor) similar to 0.2 dex; and (iii) the presence of O-Na-Al (anti) correlations in both stellar groups. We have defined a new photometric index, c(BVI) = (B - V) -(V - I), to maximize the separation in the colour-magnitude diagram between the two stellar groups with different Fe and s-element content, and this index is not significantly affected by variations in light elements (such as the O-Na anticorrelation). The variations in the overall metallicity present in NGC 5286 add this object to the class of anomalous GCs. Furthermore, the chemical abundance pattern of NGC 5286 resembles that observed in some of the anomalous GCs, e.g. M 22, NGC 1851, M 2, and the more extreme omega Centauri, that also show internal variations in s-elements, and in light elements within stars with different Fe and s-elements content. In view of the common variations in s-elements, we propose the term s-Fe-anomalous GCs to describe this sub-class of objects. The similarities in chemical abundance ratios between these objects strongly suggest similar formation and evolution histories, possibly associated with an origin in tidally disrupted dwarf satellites.
- ItemThe chemical composition of red giants in 47 Tucanae I. Fundamental parameters and chemical abundance patterns(2014) Thygesen, A. O.; Sbordone, L.; Andrievsky, S.; Korotin, S.; Yong, D.; Zaggia, S.; Ludwig, H. -G.; Collet, R.; Asplund, M.; Ventura, P.; D'Antona, F.; Melendez, J.; D'Ercole, A.Context. The study of chemical abundance patterns in globular clusters is key importance to constraining the different candidates for intracluster pollution of light elements.
- ItemThe chemical composition of red giants in 47 Tucanae II. Magnesium isotopes and pollution scenarios(EDP SCIENCES S A, 2016) Thygesen, A. O.; Sbordone, L.; Ludwig, H. G.; Ventura, P.; Yong, D.; Collet, R.; Christlieb, N.; Melendez, J.; Zaggia, S.Context. The phenomenon of multiple populations in globular clusters is still far from understood, with several proposed mechanisms to explain the observed behaviour. The study of elemental and isotopic abundance patterns are crucial for investigating the differences among candidate pollution mechanisms.