Browsing by Author "Cortese, Daphne"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAdaptive effects of parental and developmental environments on offspring survival, growth and phenotype(2022) Cortese, Daphne; Crespel, Amelie; Mills, Suzanne C.; Norin, Tommy; Killen, Shaun S.; Beldade, RicardoPhenotypic adjustments to environmental variation are particularly relevant to cope with putative environmental mismatches often imposed by natal dispersal. We used an intergenerational cross-transplant field-based experiment to evaluate the morphological and physiological effects of parental and postsettlement water flow environments on the orange-fin anemonefish Amphiprion chrysopterus through ontogeny (at pre- and postsettlement stages). Offspring born from parents under high water flow had an 18% higher caudal fin aspect ratio (a compound measure of shape) at the presettlement stage, 10% slower growth after settlement, and 55% lower survival after settlement compared to offspring from low water flow parents. At the presettlement stage, caudal fin length was determined by parental caudal fin length. At the postsettlement stage, fish survived equally well with similar phenotypes in both high and low developmental flow environments. However, results suggest potential developmental phenotypic plasticity in caudal fin length, which increases more under low water flow during development. After settlement, growth was the only morphological or physiological trait that was associated with parental water flow, which was lower from parents under high flow, as was survival. These results give important insights into the parental contribution, both genetic and nongenetic, in determining early offspring phenotype and subsequent growth and survival. Our results also suggest that offspring may possess flexibility to cope with a wide range of local environments including those different from their parents. Overall, the findings of this study show the fitness consequences of living in different environments and the likely trade-offs between parental and offspring fitness in a wild population. Read the free Plain Language Summary for this article on the Journal blog.
- ItemDeep Heat: A Comparison of Water Temperature, Anemone Bleaching, Anemonefish Density and Reproduction between Shallow and Mesophotic Reefs(2021) Haguenauer, Anne; Zuberer, Frederic; Siu, Gilles; Cortese, Daphne; Beldade, Ricardo; Mills, Suzanne C.French Polynesia is experiencing increasing coral bleaching events in shallow waters triggered by thermal anomalies and marine heatwaves linked to climate change, a trend that is replicated worldwide. As sea surface thermal anomalies are assumed to lessen with depth, mesophotic deep reefs have been hypothesized to act as refuges from anthropogenic and natural disturbances, the 'deep reef refugia hypothesis' (DRRH). However, evidence supporting the DRRH is either inconclusive or conflicting. We address this by investigating four assumptions of the DRRH focusing on the symbiotic association between anemones and anemonefish. First, we compare long-term temperature conditions between shallow (8 m) and mesophotic sites (50 m) on the island of Moorea from 2011-2020. Second, we compare the densities of the orange-fin anemonefish, Amphiprion chrysopterus between shallow and mesophotic (down to 60 m) reefs across three archipelagos in French Polynesia. Finally, we compare the percentage of anemone bleaching, as well as anemonefish reproduction, between shallow and mesophotic reefs. We found that the water column was well mixed in the cooler austral winter months with only a 0.19 degrees C difference in temperature between depths, but in the warmer summer months mixing was reduced resulting in a 0.71-1.03 degrees C temperature difference. However, during thermal anomalies, despite a time lag in warm surface waters reaching mesophotic reefs, there was ultimately a 1.0 degrees C increase in water temperature at both 8 and 50 m, pushing temperatures over bleaching thresholds at both depths. As such, anemone bleaching was observed in mesophotic reefs during these thermal anomalies, but was buffered compared to the percentage of bleaching in shallower waters, which was nearly five times greater. Our large-scale sampling across French Polynesia found orange-fin anemonefish, A. chrysopterus, in mesophotic zones in two high islands and one atoll across two archipelagos, extending its bathymetric limit to 60 m; however, orange-fin anemonefish densities were either similar to, or 25-92 times lower than in shallower zones. Three spawning events were observed at 50 m, which occurred at a similar frequency to spawning on shallower reefs at the same date. Our findings of thermal anomalies and bleaching in mesophotic reefs, coupled with mainly lower densities of anemonefish in mesophotic populations, suggest that mesophotic reefs show only a limited ability to provide refugia from anthropogenic and natural disturbances.
- ItemLong-term exposure to artificial light at night in the wild decreases survival and growth of a coral reef fish(2021) Schligler, Jules; Cortese, Daphne; Beldade, Ricardo; Swearer, Stephen E.; Mills, Suzanne C.Artificial light at night (ALAN) is an increasing anthropogenic pollutant, closely associated with human population density, and now well recognized in both terrestrial and aquatic environments. However, we have a relatively poor understanding of the effects of ALAN in the marine realm. Here, we carried out a field experiment in the coral reef lagoon of Moorea, French Polynesia, to investigate the effects of long-term exposure (18-23 months) to chronic light pollution at night on the survival and growth of wild juvenile orange-fin anemonefish, Amphiprion chrysopterus. Long-term exposure to environmentally relevant underwater illuminance (mean: 4.3 lux), reduced survival (mean: 36%) and growth (mean: 44%) of juvenile anemonefish compared to that of juveniles exposed to natural moonlight underwater (mean: 0.03 lux). Our study carried out in an ecologically realistic situation in which the direct effects of artificial lighting on juvenile anemonefish are combined with the indirect consequences of artificial lighting on other species, such as their competitors, predators, and prey, revealed the negative impacts of ALAN on life-history traits. Not only are there immediate impacts of ALAN on mortality, but the decreased growth of surviving individuals may also have considerable fitness consequences later in life. Future studies examining the mechanisms behind these findings are vital to understand how organisms can cope and survive in nature under this globally increasing pollutant.
- ItemPhysiological and behavioural effects of anemone bleaching on symbiont anemonefish in the wild(2021) Cortese, Daphne; Norin, Tommy; Beldade, Ricardo; Crespel, Amelie; Killen, Shaun S.; Mills, Suzanne C.1. Climate change causes extreme heat waves that have induced worldwide mass coral bleaching. The impacts of temperature-induced bleaching events on the loss of algal endosymbionts in both corals and anemones are well documented. However, the cascading impacts of bleaching on animals that live in association with corals and anemones are understudied.