Browsing by Author "Costabal, Francisco Sahli"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemAssessing Language Lateralization through Gray Matter Volume: Implications for Preoperative Planning in Brain Tumor Surgery(2024) Solomons, Daniel; Rodriguez-Fernandez, Maria; Mery-Munoz, Francisco; Arrano-Carrasco, Leonardo; Costabal, Francisco Sahli; Mendez-Orellana, CarolinaBackground/Objectives: Functional MRI (fMRI) is widely used to assess language lateralization, but its application in patients with brain tumors can be hindered by cognitive impairments, compensatory neuroplasticity, and artifacts due to patient movement or severe aphasia. Gray matter volume (GMV) analysis via voxel-based morphometry (VBM) in language-related brain regions may offer a stable complementary approach. This study investigates the relationship between GMV and fMRI-derived language lateralization in healthy individuals and patients with left-hemisphere brain tumors, aiming to enhance accuracy in complex cases. Methods: The MRI data from 22 healthy participants and 28 individuals with left-hemisphere brain tumors were analyzed. Structural T1-weighted and functional images were obtained during three language tasks. Language lateralization was assessed based on activation in predefined regions of interest (ROIs), categorized as typical (left) or atypical (right or bilateral). The GMV in these ROIs was measured using VBM. Linear regressions explored GMV-lateralization associations, and logistic regressions predicted the lateralization based on the GMV. Results: In the healthy participants, typical left-hemispheric language dominance correlated with higher GMV in the left pars opercularis of the inferior frontal gyrus. The brain tumor participants with atypical lateralization showed increased GMV in six right-hemisphere ROIs. The GMV in the language ROIs predicted the fMRI language lateralization, with AUCs from 80.1% to 94.2% in the healthy participants and 78.3% to 92.6% in the tumor patients. Conclusions: GMV analysis in language-related ROIs effectively complements fMRI for assessing language dominance, particularly when fMRI is challenging. It correlates with language lateralization in both healthy individuals and brain tumor patients, highlighting its potential in preoperative language mapping. Further research with larger samples is needed to refine its clinical utility.
- ItemCOVID-19 dynamics across the US: A deep learning study of human mobility and social behavior(2021) Bhouri, Mohamed Aziz; Costabal, Francisco Sahli; Wang, Hanwen; Linka, Kevin; Peirlinck, Mathias; Kuhl, Ellen; Perdikaris, ParisThis paper presents a deep learning framework for epidemiology system identification from noisy and sparse observations with quantified uncertainty. The proposed approach employs an ensemble of deep neural networks to infer the time-dependent reproduction number of an infectious disease by formulating a tensor-based multi-step loss function that allows us to efficiently calibrate the model on multiple observed trajectories. The method is applied to a mobility and social behavior-based SEIR model of COVID-19 spread. The model is trained on Google and Unacast mobility data spanning a period of 66 days, and is able to yield accurate future forecasts of COVID-19 spread in 203 US counties within a time-window of 15 days. Interestingly, a sensitivity analysis that assesses the importance of different mobility and social behavior parameters reveals that attendance of close places, including workplaces, residential, and retail and recreational locations, has the largest impact on the effective reproduction number. The model enables us to rapidly probe and quantify the effects of government interventions, such as lock-down and re-opening strategies. Taken together, the proposed framework provides a robust workflow for data-driven epidemiology model discovery under uncertainty and produces probabilistic forecasts for the evolution of a pandemic that can judiciously provide information for policy and decision making. All codes and data accompanying this manuscript are available at https://github.com/PredictiveIntelligenceLab/DeepCOVID19. (C) 2021 Elsevier B.V. All rights reserved.
- ItemHow viscous is the beating heart? Insights from a computational study(2022) Tikenogullari, Oguz Ziya; Costabal, Francisco Sahli; Yao, Jiang; Marsden, Alison; Kuhl, EllenUnderstanding tissue rheology is critical to accurately model the human heart. While the elastic properties of cardiac tissue have been extensively studied, its viscous properties remain an issue of ongoing debate. Here we adopt a viscoelastic version of the classical Holzapfel Ogden model to study the viscous timescales of human cardiac tissue. We perform a series of simulations and explore stress-relaxation curves, pressure-volume loops, strain profiles, and ventricular wall strains for varying viscosity parameters. We show that the time window for model calibration strongly influences the parameter identification. Using a four-chamber human heart model, we observe that, during the physiologically relevant time scales of the cardiac cycle, viscous relaxation has a negligible effect on the overall behavior of the heart. While viscosity could have important consequences in pathological conditions with compromised contraction or relaxation properties, we conclude that, for simulations within the physiological range of a human heart beat, we can reasonably approximate the human heart as hyperelastic.
- ItemSimulation-free prediction of atrial fibrillation inducibility with the fibrotic kernel signature(2025) Banduc, Tomas; Azzolin, Luca; Manninger, Martin; Scherr, Daniel; Plank, Gernot; Pezzuto, Simone; Costabal, Francisco SahliComputational models of atrial fibrillation (AF) can help improve success rates of interventions, such as ablation. However, evaluating the efficacy of different treatments requires performing multiple costly simulations by pacing at different points and checking whether AF has been induced or not, hindering the clinical application of these models. In this work, we propose a classification method that can predict AF inducibility in patient-specific cardiac models without running additional simulations. Our methodology does not require retraining when changing atrial anatomy or fibrotic patterns. To achieve this, we develop a set of features given by a variant of the heat kernel signature that incorporates fibrotic pattern information and fiber orientations: the fibrotic kernel signature (FKS). The FKS is faster to compute than a single AF simulation, and when paired with machine learning classifiers, it can predict AF inducibility in the entire domain. To learn the relationship between the FKS and AF inducibility, we performed 2371 AF simulations comprising 6 different anatomies and various fibrotic patterns, which we split into training and a testing set. We obtain a median F1 score of 85.2% in test set and we can predict the overall inducibility with a mean absolute error of 2.76 percent points, which is lower than alternative methods. We think our method can significantly speed-up the calculations of AF inducibility, which is crucial to optimize therapies for AF within clinical timelines. An example of the FKS for an open source model is provided in https://github.com/tbanduc/FKS_AtrialModel_Ferrer.git.
- ItemThe importance of mechano-electrical feedback and inertia in cardiac electromechanics(2017) Costabal, Francisco Sahli; Concha, Felipe A.; Hurtado Sepúlveda, Daniel; Kuhl, Ellen