Browsing by Author "De Gregorio, Cristian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCollateral Sprouting of Peripheral Sensory Neurons Exhibits a Unique Transcriptomic Profile(2020) Lemaitre, Dominique; Llavero Hurtado, Maica; De Gregorio, Cristian; Onate, Maritza; Martinez, Gabriela; Catenaccio, Alejandra; Wishart, Thomas M.; Court, Felipe A.Peripheral nerve injuries result in motor and sensory dysfunction which can be recovered by compensatory or regenerative processes. In situations where axonal regeneration of injured neurons is hampered, compensation by collateral sprouting from uninjured neurons contributes to target reinnervation and functional recovery. Interestingly, this process of collateral sprouting from uninjured neurons has been associated with the activation of growth-associated programs triggered by Wallerian degeneration. Nevertheless, the molecular alterations at the transcriptomic level associated with these compensatory growth mechanisms remain to be fully elucidated. We generated a surgical model of partial sciatic nerve injury in mice to mechanistically study degeneration-induced collateral sprouting from spared fibers in the peripheral nervous system. Using next-generation sequencing and Ingenuity Pathway Analysis, we described the sprouting-associated transcriptome of uninjured sensory neurons and compare it with the activated by regenerating neurons. In vitro approaches were used to functionally assess sprouting gene candidates in the mechanisms of axonal growth. Using a novel animal model, we provide the first description of the sprouting transcriptome observed in uninjured sensory neurons after nerve injury. This collateral sprouting-associated transcriptome differs from that seen in regenerating neurons, suggesting a molecular program distinct from axonal growth. We further demonstrate that genetic upregulation of novel sprouting-associated genes activates a specific growth program in vitro, leading to increased neuronal branching. These results contribute to our understanding of the molecular mechanisms associated with collateral sprouting in vivo. The data provided here will therefore be instrumental in developing therapeutic strategies aimed at promoting functional recovery after injury to the nervous system.
- ItemMaintenance of chronicity signatures in fibroblasts isolated from recessive dystrophic epidermolysis bullosa chronic wound dressings under culture conditions(2023) De Gregorio, Cristian; Catalán, Evelyng; Garrido, Gabriel; Morandé, Pilar; Bennett, Jimena C.; Muñoz, Catalina; Cofré, Glenda; Huang, Ya-Lin; Cuadra, Bárbara; Murgas, Paola; Calvo Bascuñan, Margarita; Altermatt Couratier, Fernando René; Yubero, María J.; Palisson, Francis; South, Andrew P.; Ezquer, Marcelo; Fuentes, IgnaciaBackground Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare inherited skin disease caused by variants in the COL7A1 gene, coding for type VII collagen (C7), an important component of anchoring fibrils in the basement membrane of the epidermis. RDEB patients suffer from skin fragility starting with blister formation and evolving into chronic wounds, inflammation and skin fibrosis, with a high risk of developing aggressive skin carcinomas. Restricted therapeutic options are limited by the lack of in vitro models of defective wound healing in RDEB patients. Results In order to explore a more efficient, non-invasive in vitro model for RDEB studies, we obtained patient fibroblasts derived from discarded dressings) and examined their phenotypic features compared with fibroblasts derived from non-injured skin of RDEB and healthy-donor skin biopsies. Our results demonstrate that fibroblasts derived from RDEB chronic wounds (RDEB-CW) displayed characteristics of senescent cells, increased myofibroblast differentiation, and augmented levels of TGF-β1 signaling components compared to fibroblasts derived from RDEB acute wounds and unaffected RDEB skin as well as skin from healthy-donors. Furthermore, RDEB-CW fibroblasts exhibited an increased pattern of inflammatory cytokine secretion (IL-1β and IL-6) when compared with RDEB and control fibroblasts. Interestingly, these aberrant patterns were found specifically in RDEB-CW fibroblasts independent of the culturing method, since fibroblasts obtained from dressing of acute wounds displayed a phenotype more similar to fibroblasts obtained from RDEB normal skin biopsies. Conclusions Our results show that in vitro cultured RDEB-CW fibroblasts maintain distinctive cellular and molecular characteristics resembling the inflammatory and fibrotic microenvironment observed in RDEB patients’ chronic wounds. This work describes a novel, non-invasive and painless strategy to obtain human fibroblasts chronically subjected to an inflammatory and fibrotic environment, supporting their use as an accessible model for in vitro studies of RDEB wound healing pathogenesis. As such, this approach is well suited to testing new therapeutic strategies under controlled laboratory conditions.