Browsing by Author "Decros, Guillaume"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemANOTHER TALE FROM THE HARSH WORLD: HOW PLANTS ADAPT TO EXTREME ENVIRONMENTS(2021) Dussarrat, Thomas; Decros, Guillaume; Diaz, Francisca P.; Gibon, Yves; Latorre, Claudio; Rolin, Dominique; Gutierrez, Rodrigo A.; Petriacq, PierreThe environmental fluctuations of a constantly evolving world can mould a changing context, often unfavourable to sessile organisms that must adjust their resource allocation between both resistance or tolerance mechanisms and growth. Plants bear the fascinating ability to survive and thrive under extreme conditions, a capacity that has always attracted the curiosity of humans, who have discovered and improved species capable of meeting our physiological needs. In this context, plant research has produced a great wealth of knowledge on the responses of plants to a range of abiotic stresses, mostly considering model species and/or controlled conditions. However, there is still minimal comprehension of plant adaptations and acclimations to extreme environments, which cries out for future investigations. In this article, we examined the main advances in understanding the adapted traits fixed through evolution that allowed for plant resistance against abiotic stress in extreme natural ecosystems. Spatio-temporal adaptations from extremophile plant species are described from morpho-anatomical features to physiological function and metabolic pathways adjustments. Considering that metabolism is at the heart of plant adaptations, a focus is given to the study of primary and secondary metabolic adjustments as well as redox metabolism under extreme conditions. This article further casts a critical glance at the main successes in studying extreme environments and examines some of the challenges and opportunities this research offers, especially considering the possible interaction with ecology and metaphenomics.
- ItemEcological and metabolic implications of the nurse effect of Maihueniopsis camachoi in the Atacama Desert(2024) Diaz, Francisca P.; Dussarrat, Thomas; Carrasco-Puga, Gabriela; Colombie, Sophie; Prigent, Sylvain; Decros, Guillaume; Bernillon, Stephane; Cassan, Cedric; Flandin, Amelie; Guerrero, Pablo C.; Gibon, Yves; Rolin, Dominique; Cavieres, Lohengrin A.; Petriacq, Pierre; Latorre, Claudio; Gutierrez, Rodrigo A.Plant-plant positive interactions are key drivers of community structure. Yet, the underlying molecular mechanisms of facilitation processes remain unexplored. We investigated the 'nursing' effect of Maihueniopsis camachoi, a cactus that thrives in the Atacama Desert between c. 2800 and 3800 m above sea level. We hypothesised that an important protective factor is thermal amelioration of less cold-tolerant species with a corresponding impact on molecular phenotypes.To test this hypothesis, we compared plant cover and temperatures within the cactus foliage with open areas and modelled the effect of temperatures on plant distribution. We combined eco-metabolomics and machine learning to test the molecular consequences of this association.Multiple species benefited from the interaction with M. camachoi. A conspicuous example was the extended distribution of Atriplex imbricata to colder elevations in association with M. camachoi (400 m higher as compared to plants in open areas). Metabolomics identified 93 biochemical markers predicting the interaction status of A. imbricata with 79% accuracy, independently of year.These findings place M. camachoi as a key species in Atacama plant communities, driving local biodiversity with an impact on molecular phenotypes of nursed species. Our results support the stress-gradient hypothesis and provide pioneer insights into the metabolic consequences of facilitation.
- ItemPhylogenetically diverse wild plant species use common biochemical strategies to thrive in the Atacama Desert(2024) Dussarrat, Thomas; Nilo-Poyanco, Ricardo; Moyano Yugovic, Tomas Custodio; Prigent, Sylvain; Jeffers, Tim L.; Diaz, Francisca P.; Decros, Guillaume; Audi, Lauren; Sondervan, Veronica M.; Shen, Bingran; Araus, Viviana; Rolin, Dominique; Shasha, Dennis; Coruzzi, Gloria M.; Gibon, Yves; Latorre H., Claudio; Petriacq, Pierre; Gutierrez Alliende, Rodrigo HernánThe best ideotypes are under mounting pressure due to increased aridity. Understanding the conserved molecular mechanisms that evolve in wild plants adapted to harsh environments is crucial in developing new strategies for agriculture. Yet our knowledge of such mechanisms in wild species is scant. We performed metabolic pathway reconstruction using transcriptome information from 32 Atacama and phylogenetically related species that do not live in Atacama (Sisters species). We analyzed reaction enrichment to understand the commonalities and differences of Atacama plants. To gain insights into the mechanisms that ensure survival, we compared expressed gene isoform numbers and gene expression patterns between the annotated biochemical reactions from 32 Atacama and Sister species. We found biochemical convergences characterized by reactions enriched in at least 50% of the Atacama species, pointing to potential advantages against drought and nitrogen starvation, for instance. These findings suggest that the adaptation in the Atacama Desert may result in part from shared genetic legacies governing the expression of key metabolic pathways to face harsh conditions. Enriched reactions corresponded to ubiquitous compounds common to extreme and agronomic species and were congruent with our previous metabolomic analyses. Convergent adaptive traits offer promising candidates for improving abiotic stress resilience in crop species.