Browsing by Author "Diaz-Castro, Francisco"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemA single bout of resistance exercise triggers mitophagy, potentially involving the ejection of mitochondria in human skeletal muscle(2024) Diaz-Castro, Francisco; Tunon-Suarez, Mauro; Rivera, Patricia; Botella, Javier; Cancino, Jorge; Figueroa, Ana Maria; Gutierrez, Juan; Cantin, Claudette; Deldicque, Louise; Zbinden-Foncea, Hermann; Nielsen, Joachim; Henriquez-Olguin, Carlos; Morselli, Eugenia; Castro-Sepulveda, MauricioAimThe present study aimed to investigate the effects of a single bout of resistance exercise on mitophagy in human skeletal muscle (SkM).MethodsEight healthy men were recruited to complete an acute bout of one-leg resistance exercise. SkM biopsies were obtained one hour after exercise in the resting leg (Rest-leg) and the contracting leg (Ex-leg). Mitophagy was assessed using protein-related abundance, transmission electron microscopy (TEM), and fluorescence microscopy.ResultsOur results show that acute resistance exercise increased pro-fission protein phosphorylation (DRP1Ser616) and decreased mitophagy markers such as PARKIN and BNIP3L/NIX protein abundance in the Ex-leg. Additionally, mitochondrial complex IV decreased in the Ex-leg when compared to the Rest-leg. In the Ex-leg, TEM and immunofluorescence images showed mitochondrial cristae abnormalities, a mitochondrial fission phenotype, and increased mitophagosome-like structures in both subsarcolemmal and intermyofibrillar mitochondria. We also observed increased mitophagosome-like structures on the subsarcolemmal cleft and mitochondria in the extracellular space of SkM in the Ex-leg. We stimulated human primary myotubes with CCCP, which mimics mitophagy induction in the Ex-leg, and found that BNIP3L/NIX protein abundance decreased independently of lysosomal degradation. Finally, in another human cohort, we found a negative association between BNIP3L/NIX protein abundance with both mitophagosome-like structures and mitochondrial cristae density in the SkM.ConclusionThe findings suggest that a single bout of resistance exercise can initiate mitophagy, potentially involving mitochondrial ejection, in human skeletal muscle. BNIP3L/NIX is proposed as a sensitive marker for assessing mitophagy flux in SkM.
- ItemGlucocorticoid Receptor β Overexpression Has Agonist-Independent Insulin-Mimetic Effects on HepG2 Glucose Metabolism(2022) Sepulveda-Quinenao, Claudia; Rodriguez, Juan M.; Diaz-Castro, Francisco; del Campo, Andrea; Bravo-Sagua, Roberto; Troncoso, RodrigoGlucocorticoids (GC) are steroids hormones that drive circulating glucose availability through gluconeogenesis in the liver. However, alternative splicing of the GR mRNA produces two isoforms, termed GR alpha and GR beta. GR alpha is the classic receptor that binds to GCs and mediates the most described actions of GCs. GR beta does not bind GCs and acts as a dominant-negative inhibitor of GR alpha. Moreover, GR beta has intrinsic and GR alpha-independent transcriptional activity. To date, it remains unknown if GR beta modulates glucose handling in hepatocytes. Therefore, the study aims to characterize the impact of GR beta overexpression on glucose uptake and storage using an in vitro hepatocyte model. Here we show that GR beta overexpression inhibits the induction of gluconeogenic genes by dexamethasone. Moreover, GR beta activates the Akt pathway, increases glucose transports mRNA, increasing glucose uptake and glycogen storage as an insulin-mimetic. Our results suggest that GR beta has agonist-independent insulin-mimetic actions in HepG2 cells.
- ItemInner mitochondrial membrane ultrastructure adaptations in the aging heart(ELSEVIER, 2022) Molina-Riquelme, Isidora; Gomez, Wileidy; Barrientos, Gonzalo; Diaz-Castro, Francisco; del Campo-Sefir, Andrea; Garrido, Luis; Morris, Silke; Breitsprecher, Leonhard; Psathaki, Katherina; Verdejo, Hugo; Busch, Karin B.; Eisner, Veronica
- ItemMitochondrial cristae ultrastructure adaptations in the senescent heart(CELL PRESS, 2022) Barrientos, Gonzalo; Molina, Isidora E.; Gomez, Wileidy; Diaz-Castro, Francisco; delCampo-Sefir, Andrea; Garrido, Luis; Morris, Silke; Psathaki, Katherina; Verdejo, Hugo; Busch, Karin B.; Eisner, Veronica
- ItemMitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD(2024) Borquez, Juan Carlos; Diaz-Castro, Francisco; Pino-de La Fuente, Francisco; Espinoza, Karla; Figueroa, Ana Maria; Martinez-Ruiz, Inma; Hernandez, Vanessa; Lopez-Soldado, Iliana; Ventura, Raill; Domingo, Joan Carles; Bosch, Marta; Fajardo, Alba; Sebastian, David; Espinosa, Alejandra; Pol, Albert; Zorzano, Antonio; Cortes, Victor; Hernandez-Alvarez, Maria Isabel; Troncoso, RodrigoBackground and aim: The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. Approach and results: Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP -coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. Conclusions: This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.
- ItemPalmitic acid control of ciliogenesis modulates insulin signaling in hypothalamic neurons through an autophagy-dependent mechanism(SPRINGERNATURE, 2022) Avalos, Yenniffer; Paz Hernandez-Caceres, Maria; Lagos, Pablo; Pinto-Nunez, Daniela; Rivera, Patricia; Burgos, Paulina; Diaz-Castro, Francisco; Joy-Immediato, Michelle; Venegas-Zamora, Leslye; Lopez-Gallardo, Erik; Kretschmar, Catalina; Batista-Gonzalez, Ana; Cifuentes-Araneda, Flavia; Toledo-Valenzuela, Lilian; Rodriguez-Pena, Marcelo; Espinoza-Caicedo, Jasson; Perez-Leighton, Claudio; Bertocchi, Cristina; Cerda, Mauricio; Troncoso, Rodrigo; Parra, Valentina; Budini, Mauricio; Burgos, Patricia, V; Criollo, Alfredo; Morselli, EugeniaPalmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.
- ItemThe fasting-feeding metabolic transition regulates mitochondrial dynamics(2021) Castro-Sepulveda, Mauricio; Morio, Beatrice; Tunon-Suarez, Mauro; Jannas-Vela, Sebastian; Diaz-Castro, Francisco; Rieusset, Jennifer; Zbinden-Foncea, HermannIn humans, insulin resistance has been linked to an impaired metabolic transition from fasting to feeding (metabolic flexibility; MetFlex). Previous studies suggest that mitochondrial dynamics response is a putative determinant of MetFlex; however, this has not been studied in humans. Thus, the aim of this study was to investigate the mitochondrial dynamics response in the metabolic transition from fasting to feeding in human peripheral blood mononuclear cells (PBMCs). Six male subjects fasted for 16 h (fasting), immediately after which they consumed a 75-g oral glucose load (glucose). In both fasting and glucose conditions, blood samples were taken to obtain PBMCs. Mitochondrial dynamics were assessed by electron microscopy images. We exposed in vitro acetoacetate-treated PBMCs to the specific IP3R inhibitor Xestospongin B (XeB) to reduce IP3R-mediated mitochondrial Ca2+ accumulation. This allowed us to evaluate the role of ER-mitochondria Ca2+ exchange in the mitochondrial dynamic response to substrate availability. To determine whether PBMCs could be used in obesity context (low MetFlex), we measured mitochondrial dynamics in mouse spleen-derived lymphocytes from WT and ob/ob mice. We demonstrated that the transition from fasting to feeding reduces mitochondria-ER interactions, induces mitochondrial fission and reduces mitochondrial cristae density in human PBMCs. In addition, we demonstrated that IP3R activity is key in the mitochondrial dynamics response when PBMCs are treated with a fasting-substrate in vitro. In murine mononuclear-cells, we confirmed that mitochondria-ER interactions are regulated in the fasted-fed transition and we further highlight mitochondria-ER miscommunication in PBMCs of diabetic mice. In conclusion, our results demonstrate that the fasting/feeding transition reduces mitochondria-ER interactions, induces mitochondrial fission and reduces mitochondrial cristae density in human PBMCs, and that IP3R activity may potentially play a central role.