Browsing by Author "Diaz-Uribe, Carlos"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAdsorption and Photocatalytic Degradation of Methylene Blue on TiO2 Thin Films Impregnated with Anderson-Evans Al-Polyoxometalates: Experimental and DFT Study(2023) Duran, Freider; Diaz-Uribe, Carlos; Vallejo, William; Munoz-Acevedo, Amner; Schott, Eduardo; Zarate, XimenaIn this work, we fabricated a TiO2 thin film,and thesame film was modified with an Anderson aluminum polyoxometalate (TiO2-AlPOM). Physical-chemical characterization of thecatalysts showed a significant change in morphological and opticalproperties of the TiO2 thin films after surface modification.We applied the kinetic and isothermal models to the methylene blue(MB) adsorption process on both catalysts. The pseudo-second ordermodel was the best fitting model for the kinetic results; qe (mg/g) was 11.9 for TiO2 thin films and 14.6for TiO2-AlPOM thin films, and k (2) (g mg(-1) min(-1)) was 16.3 x10(-2) for TiO2 thin films and 28.2 x10(-2) for TiO2-AlPOM thin films. Furthermore,the Freundlich model was suitable to describe the isothermal behaviorof TiO2, K (F) (5.42 mg/g), and1/n (0.312). The kinetics of photocatalytic degradationwas fitted using the Langmuir-Hinshelwood model; k (ap) was 7 x 10(-4) min(-1) for TiO2 and 13 x 10(-4) min(-1) for TiO2-AlPOM. The comparative studyshowed that TiO2 thin films reach a 19.6% MB degradationunder UV irradiation and 9.1% MB adsorption, while the TiO2-AlPOM thin films reach a 32.6% MB degradation and 12.2% MB adsorptionon their surface. The surface modification improves the morphological,optical, and photocatalytic properties of the thin films. Finally,the DFT study supports all the previously shown results.
- ItemAntimicrobial Activity against Fusarium oxysporum f. sp. dianthi of TiO2/ZnO Thin Films under UV Irradiation: Experimental and Theoretical Study(2024) Quinones, Cesar; Posada, Martha; Hormiga, Angie; Pena, Julian; Diaz-Uribe, Carlos; Vallejo, William; Munoz-Acevedo, Amner; Roa, Vanesa; Schott, Eduardo; Zarate, XimenaWe deposited bare TiO2 and TiO2/ZnO thin films to study their antimicrobial capacity against Fusarium oxysporum f. sp. dianthi. The deposit of TiO2 was performed by spin coating and the ZnO thin films were deposited onto the TiO2 surface by plasma-assisted reactive evaporation technique. The characterization of the compounds was carried out by scanning electron microscopy (SEM) and powder X-ray diffraction techniques. Furthermore, density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed to support the observed experimental results. Thus, the removal of methylene blue (MB) by adsorption and posterior photocatalytic degradation was studied. Adsorption kinetic results showed that TiO2/ZnO thin films were more efficient in MB removal than bare TiO2 thin films, and the pseudo-second-order model was suitable to describe the experimental results for TiO2/ZnO (q(e) = 12.9 mg/g; k(2) = 0.14 g/mg/min) and TiO2 thin films (q(e) = 12.0 mg/g; k(2) = 0.13 g/mg/min). Photocatalytic results under UV irradiation showed that TiO2 thin films reached 10.9% of MB photodegradation (k = 1.0 x 10(-3) min(-1)), whereas TiO2/ZnO thin films reached 20.6% of MB photodegradation (k = 3.9 x 10(-3) min(-1)). Both thin films reduced the photocatalytic efficiency by less than 3% after 4 photocatalytic tests. DFT study showed that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap decreases for the mixed nanoparticle system, showing its increased reactivity. Furthermore, the chemical hardness shows a lower value for the mixed system, whereas the electrophilicity index shows the biggest value, supporting the larger reactivity for the mixed nanoparticle system. Finally, the antimicrobial activity against F. oxysporum f. sp. dianthi showed that bare TiO2 reached a growth reduction of 68% while TiO2/ZnO reached a growth reduction of 90% after 250 min of UV irradiation.
- ItemCyanobacterial pigment adsorbed on TiO2 thin films(2024) Diaz-Uribe, Carlos; Duran, Freider; Arcon, Amado; Vallejo, William; Salazar Canas, Javier Antoni; Schott Verdugo, Eduardo Enrique; Zarate, XimenaThe rise in toxicity related to cyanobacterial bloom in freshwater is a current problem that perturbs the trophic chain and risks the ecosystems and human health. Currently, the use of biomass as a potential source of value-added bio-products is an important goal to be achieved in the scope of a sustainable bio-economy. Thus, taking advantage of such bacteria is needed. In the present work, we studied the use of cyanobacterial biomass coming from the Malambo swamp in Colombia as a source of Phycocyanobilin (C-PC) and Chlorophyll-a (Chla) which were used as natural pigments for TiO2 thin films. The concentration obtained of C-PC and Chla extracted were 215 μg/mL and 0.417 μg/mL, respectively. We modeled the natural dye adsorption kinetics on TiO2 thin films through three different models. The Langmuir model showed the best fitting, indicating that the pigment extracted from cyanobacterial biomass can sensitize thin TiO2 film through the formation of a monolayer. Furthermore, the TiO2 films present higher adsorption of C-PC (25.8 mg/g) than Chla (23.3 mg/g). Finally, the adsorption modes were assessed using periodic DFT approximations, which is a remarkable method for studying the structure and properties of solid materials. In terms of binding energies, it was found that the dye shows the strongest interaction with TiO2 through the titanium atom. Thus, the main contribution of this work is directed to explore in deep the natural dye adsorption on TiO2 from both experimental and computational point of view.
- ItemPhotocatalytic Degradation of Methylene Blue under Visible Light Using TiO2 Thin Films Impregnated with Porphyrin and Anderson-Type Polyoxometalates (Cu and Zn)(2022) Sanguino, Alexander; Diaz-Uribe, Carlos; Duran, Freider; Vallejo, William; Guzman, Leidy; Ruiz, Daniela; Puello, Esneyder; Quinones, Cesar; Schott, Eduardo; Zarate, XimenaIn this work, tetra(4-carboxyphenyl)porphyrin (TCPP) and two Anderson-type polyoxomolybdates (containing Cu and Zn, respectively; CuPOM, ZnPOM) were synthesized and deposited on TiO2 thin films. The properties of the obtained materials were characterized through UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), diffuse reflection spectroscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The adsorption and photodegradation under the visible light irradiation of methylene blue (MB) were studied for TiO2, TCPP/TiO2, TCPP/CuPOM/TiO2 and TCPP/ZnPOM/TiO2 thin films in aqueous solution. The results of the diffuse reflectance showed two bands in the visible light spectrum for the TCPP/POM/TiO2 systems compared to unmodified TiO2 that does not show any bands in the same region of the spectrum. The TCPP/POM/TiO2 systems showed a higher removal of MB, with an adsorption rate near to 31% for the TCPP/CuPOM/TiO2 film compared to 9% adsorption on the TiO2 film. The kinetic results show that the pseudo-second order model was the best fitting model for the MB adsorption process onto fabricated materials. The photodegradation studies under visible light showed a better performance on TCPP/POM/TiO2 thin films, with an efficiency in the MB photodegradation of near 49% and 44% in aqueous solution for TCPP/CuPOM/TiO2 and TCPP/ZnPOM/TiO2, respectively. The reusability test indicated that the porphyrin films are moderately stable after the performed cycles.
- ItemPhotocatalytic study of TiO2 thin films modified with Anderson-type polyoxometalates (Cr, Co and Ni): Experimental and DFT study(2023) Diaz-Uribe, Carlos; Duran, Freider; Vallejo, William; Puello, Esneyder; Zarate, Ximena; Schott, EduardoIn this work, three Anderson-type polyoxomolybdates (POMs) with general formula (NH4)6-n[XMo6O24H6]- 6+n where X = Co3+, Cr3+, and Ni2+ were deposited on TiO2 thin films Furthermore, the methylene blue (MB) dye adsorption capacity and photocatalytic degradation were studied. Morphological results show that the POMs/TiO2 films have a more heterogeneous surface in terms of particle size and distribution than bare TiO2 films. Optical characterization indicated that the CrMo6/TiO2 material had the lowest band gap energy with a value of 2.8 eV. The adsorption results show that the maximum percentage of MB adsorption was 37 % for NiMo6/TiO2 while bare TiO2 has only 9.2 %. The MB adsorption on POMs-TiO2 was modeled using and the Freundlich model showed the best fit in all studied films for MB removal. The MB photodegradation values shows this tendency 12 % for bare TiO2, 55 % for NiMo6/TiO2, 73 % for NiMo6/TiO2 and, 83 % for CrMo6/ TiO2. Finally, DFT calculations were performed to characterize the geometry and electronic structure of the all compounds studied in this work, with the aim to explain the observed experimental results.
- ItemPhotophysical characterization of tetrahydroxyphenyl porphyrin Zn(II) and V(IV) complexes: experimental and DFT study(2023) Diaz-Uribe, Carlos; Rangel, Daily; Vallejo, William; Valle, Roger; Hidago-Rosa, Yoan; Zarate, Ximena; Schott, EduardoPhotodynamic therapy (PDT) is a promising technique for the treatment of various diseases. In this sense, the singlet oxygen quantum yield (& phi;( increment )) is a physical-chemical property that allows to stablish the applicability of a potential photosensitizers (PS) as a drug for PDT. In the herein report, the & phi;( increment ) of three photosensitizers was determined: metal-free tetrahydroxyphenyl porphyrin (THPP), THPP-Zn and the THPP-V metal complexes. Their biological application was also evaluated. Therefore, the in vitro study was carried out to assess their biological activity against Escherichia coli. The metal-porphyrin complexes exhibited highest activities against the bacterial strain Escherichia coli. at the highest concentration (175 & mu;g/mL) and show better activity than the free base ligand (salts and blank solution). Results indicated a relation between & phi;( increment ) and the inhibitory activity against Escherichia coli, thus, whereas higher is the & phi;( increment ), higher is the inhibitory activity. The values of the & phi;( increment ) and the inhibitory activity follows the tendency THPP-Zn > THPP > THPP-V. Furthermore, quantum chemical calculations allowed to gain deep insight into the electronic and optical properties of THPP-Zn macrocycle, which let to verify the most probable energy transfer pathway involved in the singlet oxygen generation.
- ItemThermodynamic Study of Mehtylene Blue Adsorption and Photocatalytic Degradation on The N-Doped TiO2 Thin Films: A DFT and Experimental Study(2024) Duran, Freider; Diaz-Uribe, Carlos; Vallejo, William; Vargas, Ximena; Bohorquez, Arnold R. Romero; Schott, Eduardo; Zarate, XimenaN-Doped TiO2 coatings (N-TiO2) were synthesized and characterized. The effect of the doping process on the physical-chemical properties and photocatalytic efficiency of Methylene Blue (MB) under visible light irradiation were studied. The bare TiO2 showed only anatase crystalline structure. Furthermore, after the doping process, a slight transition from anatase to rutile was verified. The HRXPS confirmed that the doping process was effective. The N-2 sorption using the BET assay showed a slight increase in surface area after the doping process. MB adsorption kinetic showed also a slight increase for doped TiO2 films, showing as best fitting the Langmuir model. Furthermore, a modification on the electronic structure was observed, showed by the modification of the optical absorption profile in the doped material. The results showed that the MB adsorption on N-TiO2 thin films was endothermic (Delta H=11 kJ mol(-1)) and a spontaneous process (Delta G=-6.45 kJ mol(-1)). We performed DFT calculations to three simulated doped-structures. The Gap value, the global reactivity indexes and, the Fukui function isosurfaces are presented. Finally, the scavenger tests suggested that O-2(center dot) and OH center dot could be the main ROS driving the photocatalytic process.