Browsing by Author "Duran, Walter N."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCoordinated Endothelial Nitric Oxide Synthase Activation by Translocation and Phosphorylation Determines Flow-Induced Nitric Oxide Production in Resistance Vessels(2013) Figueroa, Xavier F.; Gonzalez, Daniel R.; Puebla, Mariela; Acevedo, Juan P.; Rojas-Libano, Daniel; Duran, Walter N.; Boric, Mauricio P.Background/Aims: Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol. Methods: In isolated, perfused rat arterial mesenteric beds, we evaluated the effect of changes in flow rate (2-10 ml/min) on nitric oxide (NO) production, eNOS phosphorylation at serine 1177, eNOS subcellular distribution and co-immunoprecipitation with Cav-1, in the presence or absence of extracellular Ca2+. Results: Increases in flow induced a biphasic rise in NO production: a rapid transient phase (3-5-min) that peaked during the first 15 s, followed by a sustained phase, which lasted until the end of stimulation. Concomitantly, flow caused a rapid translocation of eNOS from the microsomal compartment to the cytosol and Golgi, paralleled by an increase in eNOS phosphorylation and a reduction in eNOS-Cav-1 association. Transient NO production, eNOS translocation and dissociation from Cav-1 depended on extracellular Ca2+, while sustained NO production was abolished by the PI3K-Akt blocker wortmannin. Conclusions: In intact resistance vessels, changes in flow induce NO production by transient Ca2+-dependent eNOS translocation from membrane to intracellular compartments and sustained Ca2+-independent PI3K-Akt-mediated phosphorylation. (C) 2013 S. Karger AG, Basel
- ItemEndothelial nitric oxide synthase regulates microvascular hyperpermeability in vivo(2006) Hatakeyama, Takuya; Pappas, Peter J.; Hobson, Robert W., II; Boric, Mauricio P.; Sessa, William C.; Duran, Walter N.Nitric oxide (NO) is an important regulator of blood flow, but its role in permeability is still challenged. We tested in vivo the hypotheses that: (a) endothelial nitric oxide synthase (eNOS) is not essential for regulation of baseline permeability; (b) eNOS is essential for hyperpermeability responses in inflammation; and (c) molecular inhibition of eNOS with caveolin-1 scaffolding domain (AP-Cav) reduces eNOS-regulated hyperpermeability. We used eNOS-deficient (eNOS-/-) mice and their wild-type control as experimental animals, platelet-activating factor (PAF) at 10(-7) m as the test pro-inflammatory agent, and integrated optical intensity (IOI) as an index of microvascular permeability. PAF increased permeability in wild-type cremaster muscle from a baseline of 2.4 +/- 2.2 to a peak net value of 84.4 +/- 2.7 units, while the corresponding values in cremaster muscle of eNOS-/- mice were 1.0 +/- 0.3 and 15.6 +/- 7.7 units (P < 0.05). Similarly, PAF increased IOI in the mesentery of wild-type mice but much less in the mesentery of eNOS-/- mice. PAF increased IOI to comparable values in the mesenteries of wild-type mice and those lacking the gene for inducible NOS (iNOS). Administration of AP-Cav blocked the microvascular hyperpermeability responses to 10(-7) m PAF. We conclude that: (1) baseline permeability does not depend on eNOS; (2) eNOS and NO are integral elements of the signalling pathway for the hyperpermeability response to PAF; (3) iNOS does not affect either baseline permeability or hyperpermeability responses to PAF; and (4) caveolin-1 inhibits eNOS regulation of microvascular permeability in vivo. Our results establish eNOS as an important regulator of microvascular permeability in inflammation.
- ItemS-Nitrosation of β-Catenin and p120 Catenin A Novel Regulatory Mechanism in Endothelial Hyperpermeability(2012) Marin, Natalie; Zamorano, Patricia; Carrasco, Rodrigo; Mujica, Patricio; Gonzalez, Francisco G.; Quezada, Claudia; Meininger, Cynthia J.; Boric, Mauricio P.; Duran, Walter N.; Sanchez, Fabiola A.Rationale: Endothelial adherens junction proteins constitute an important element in the control of microvascular permeability. Platelet-activating factor (PAF) increases permeability to macromolecules via translocation of endothelial nitric oxide synthase (eNOS) to cytosol and stimulation of eNOS-derived nitric oxide signaling cascade. The mechanisms by which nitric oxide signaling regulates permeability at adherens junctions are still incompletely understood.
- ItemTNF-α-activated eNOS signaling increases leukocyte adhesion through the S- nitrosylation pathway(2021) Aguilar, Gaynor; Cordova, Francisco; Koning, Tania; Sarmiento, Jose; Boric, Mauricio P.; Birukov, Konstantin; Cancino, Jorge; Varas-Godoy, Manuel; Soza, Andrea; Alves, Natascha G.; Mujica, Patricio E.; Duran, Walter N.; Ehrenfeld, Pamela; Sanchez, Fabiola A.Nitric oxide ( NO) is a key factor in inflammation. Endothelial nitric oxide synthase (eNOS), whose activity increases after stimulation with proinflammatory cytokines, produces NO in endothelium. NO activates two pathways: 1) soluble guanylate cyclase-protein kinase G and 2) S-nitrosylation (NO-induced modification of free-thiol cysteines in proteins). S-nitrosylation affects phosphorylation, localization, and protein interactions. NO is classically described as a negative regulator of leukocyte adhesion to endothelial cells. However, agonists activating NO production induce a fast leukocyte adhesion, which suggests that NO might positively regulate leukocyte adhesion. We tested the hypothesis that eNOS-induced NO promotes leukocyte adhesion through the S-nitrosylation pathway. We stimulated leukocyte adhesion to endothelium in vitro and in vivo using tumor necrosis factor-alpha (TNF-alpha) as proinflammatory agonist. ICAM-1 changes were evaluated by immunofluorescence, subcellular fractionation, immunoprecipitation, and fluorescence recovery after photobleaching (FRAP). Protein kinase C sigma (PKC sigma) activity and S-nitrosylation were evaluated by Western blot analysis and biotin switch method, respectively. TNF-alpha, at short times of stimulation, activated the eNOS S-nitrosylation pathway and caused leukocyte adhesion to endothelial cells in vivo and in vitro. TNF-alpha-induced NO led to changes in ICAM-1 at the cell surface, which are characteristic of clustering. TNF-alpha-induced NO also produced S-nitrosylation and phosphorylation of PKCf, association of PKCf with ICAM-1, and ICAM-1 phosphorylation. The inhibition of PKCf blocked leukocyte adhesion induced by TNF-alpha. Mass spectrometry analysis of purified PKCf identified cysteine 503 as the only S-nitrosylated residue in the kinase domain of the protein. Our results reveal a new eNOS S-nitrosylation-dependent mechanism that induces leukocyte adhesion and suggests that S-nitrosylation of PKCf may be an important regulatory step in early leukocyte adhesion in inflammation.