Browsing by Author "Dussarrat, Thomas"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAnalysis of the metabolic features of plant extremophile species from the Atacama desert(2022) Dussarrat, Thomas; Gutiérrez Ilabaca, Rodrigo Antonio; Pontificia Universidad Católica de Chile. Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería ForestalLos sitios extremos situados en los márgenes de al menos un gradiente abiótico permiten la supervivencia de muy pocas especies. Estas especies denominadas extremófilas (literalmente que aman los extremos) albergan una reserva única de adaptaciones genéticas y bioquímicas que siempre han atraído la curiosidad humana. Estudios anteriores han demostrado un alto grado de especificidad para la adaptación de las especies de plantas a biomas hostiles, lo que explica que las transferencias exitosas de esas adaptaciones a los cultivos sigan siendo escasas. Sin embargo, también pueden existir estrategias adaptativas genéricas o más generales. En este contexto, me propongo utilizar un enfoque integral desde el ecosistema hasta los metabolitos para investigar las adaptaciones bioquímicas de las especies vegetales extremófilas del desierto de Atacama, el desierto no polar más seco del planeta. Las plantas se recogieron en su entorno natural, que abarca un gradiente de altitud de 2500 a 4500m. Se combinaron múltiples enfoques metabolómicos con el aprendizaje automático o “machine learning” para develar una serie de herramientas genéricas para la resistencia de las plantas a las duras condiciones del Atacama. Posteriormente, los análisis de enriquecimiento de reacciones y vías metabólicas identificaron los legados genéticos subyacentes a las estrategias bioquímicas convergentes seleccionadas evolutivamente. Por último, se exploró el rol de las interacciones positivas con el cactus Maihueniopsis camachoi en la adaptación de varias especies a las extremas condiciones ambientales. Los resultados permitieron comprender mejor los procesos de facilitación y descubrir un novedoso conjunto de metabolitos capaces de predecir el estado de la interacción. Finalmente, este estudio aporta información importante para comprender los mecanismos de adaptación que subyacen a la resistencia de las plantas a los climas extremos, y nuestro enfoque multiespecífico presagia estudios y descubrimientos prometedores en agronomía y ecología.
- ItemConvergent and divergent responses of the rhizosphere chemistry and bacterial communities to a stress gradient in the Atacama Desert(2023) Dussarrat, Thomas; Latorre H., Claudio; Barros Santos, Millena C.; Aguado Norese, Constanza; Prigent, Sylvain; Díaz, Francisca P.; Rolin, Dominique; González, Mauricio; Müller, Caroline; Gutiérrez Ilabaca, Rodrigo Antonio; Pétriacq, PierrePlants can modulate their rhizosphere chemistry, thereby influencing microbe communities. Although our understanding of rhizosphere chemistry is growing, knowledge of its responses to abiotic constraints is limited, especially in realistic ecological contexts. Here, we combined predictive metabolomics with bacterial sequencing data to investigate whether rhizosphere chemistry responded to environmental constraints and shaped bacterial communities across an elevation gradient in the Atacama Desert. We found that metabolic adjustments of rhizosphere chemistry predicted the environment of four plant species independently of year, identifying important rhizosphere metabolic biomarkers. Inter-species predictions unveiled significant biochemical convergences. Subsequently, we linked metabolic predictors to variation in the abundance of operational taxonomic units (OTUs). Chemical response influenced distinct and common bacterial families between species and vegetation belts. The annotation of chemical markers and correlated bacterial families highlighted critical biological processes such as nitrogen starvation, metal pollution and plant development and defence. Overall, this study demonstrates a unique metabolic set likely involved in improving plant resilience to harsh edaphic conditions. Besides, the results emphasise the need to integrate ecology with plant metabolome and microbiome approaches to explore plant-soil interactions and better predict their responses to climate change and consequences for ecosystem dynamics.
- ItemPhylogenetically diverse wild plant species use common biochemical strategies to thrive in the Atacama Desert(2024) Dussarrat, Thomas; Nilo-Poyanco, Ricardo; Moyano Yugovic, Tomas Custodio; Prigent, Sylvain; Jeffers, Tim L.; Diaz, Francisca P.; Decros, Guillaume; Audi, Lauren; Sondervan, Veronica M.; Shen, Bingran; Araus, Viviana; Rolin, Dominique; Shasha, Dennis; Coruzzi, Gloria M.; Gibon, Yves; Latorre H., Claudio; Petriacq, Pierre; Gutierrez Alliende, Rodrigo HernánThe best ideotypes are under mounting pressure due to increased aridity. Understanding the conserved molecular mechanisms that evolve in wild plants adapted to harsh environments is crucial in developing new strategies for agriculture. Yet our knowledge of such mechanisms in wild species is scant. We performed metabolic pathway reconstruction using transcriptome information from 32 Atacama and phylogenetically related species that do not live in Atacama (Sisters species). We analyzed reaction enrichment to understand the commonalities and differences of Atacama plants. To gain insights into the mechanisms that ensure survival, we compared expressed gene isoform numbers and gene expression patterns between the annotated biochemical reactions from 32 Atacama and Sister species. We found biochemical convergences characterized by reactions enriched in at least 50% of the Atacama species, pointing to potential advantages against drought and nitrogen starvation, for instance. These findings suggest that the adaptation in the Atacama Desert may result in part from shared genetic legacies governing the expression of key metabolic pathways to face harsh conditions. Enriched reactions corresponded to ubiquitous compounds common to extreme and agronomic species and were congruent with our previous metabolomic analyses. Convergent adaptive traits offer promising candidates for improving abiotic stress resilience in crop species.