Browsing by Author "Egaña, José Tomás"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemDevelopment of a photosynthetic hydrogel as potential wound dressing for the local delivery of oxygen and bioactive molecules.(2022) Corrales-Orovio, Rocío; Carvajal, Felipe; Holmes, Christopher; Miranda, Miguel; González-Itier, Sergio; Cárdenas, Camila; Vera, Constanza; Schenck, Thilo; Egaña, José TomásThe development of biomaterials to improve wound healing is a critical clinical challenge and an active field of research. As it is well described that oxygen plays a critical role in almost each step of the wound healing process, in this work, an oxygen producing photosynthetic biomaterial was generated, characterized, and further modified to additionally release other bioactive molecules. Here, alginate hydrogels were loaded with the photosynthetic microalgae Chlamydomonas reinhardtii, showing high integration as well as immediate oxygen release upon illumination. Moreover, the photosynthetic hydrogel showed high biocompatibility in vitro and in vivo, and the capacity to sustain the metabolic oxygen requirements of zebrafish larvae and skin explants. In addition, the photosynthetic dressings were evaluated in 20 healthy human volunteers following the ISO-10993-10-2010 showing no skin irritation, mechanical stability of the dressings, and survival of the photosynthetic microalgae. Finally, hydrogels were also loaded with genetically engineered microalgae to release human VEGF, or pre-loaded with antibiotics, showing sustained release of both bioactive molecules. Overall, this work shows that photosynthetic hydrogels represent a feasible approach for the local delivery of oxygen and other bioactive molecules to promote wound healing.
- ItemMicroalgae share key features with human erythrocytes and can safely circulate through the vascular system in mice(2023) Ehrenfeld, Carolina; Veloso-Giménez, Valentina; Corrales-Orovio, Rocío; Rebolledo, Rolando; Boric, Mauricio P.; Egaña, José TomásAs animal cells cannot produce oxygen, erythrocytes are responsible for gas interchange, being able to capture and deliver oxygen upon tissue request. Interestingly, several other cells in nature produce oxygen by photosynthesis, raising the question of whether they could circulate within the vascular networks, acting as an alternative source for oxygen delivery. To address this long-term goal, here some physical and mechanical features of the photosynthetic microalga Chlamydomona reinhardtii were studied and compared with erythrocytes, revealing that both exhibit similar size and rheological properties. Moreover, key biocompatibility aspects of the microalgae were evaluated in vitro and in vivo, showing that C. reinhardtii can be co-cultured with endothelial cells, without affecting each other’s morphology and viability. Moreover, short-term systemic perfusion of the microalgae showed a thoroughly intravascular distribution in mice. Finally, the systemic injection of high numbers of microalgae did not trigger deleterious responses in living mice. Altogether, this work provides key scientific insights to support the notion that photosynthetic oxygenation could be achieved by circulating microalgae, representing another important step towards human photosynthesis.
- ItemPhotosymbiosis for Biomedical Applications.(2020) Chávez, Myra N.; Moellhoff, Nichola; Schenck, T.; Egaña, José Tomás; Nickelsen, J.Without the sustained provision of adequate levels of oxygen by the cardiovascular system, the tissues of higher animals are incapable of maintaining normal metabolic activity, and hence cannot survive. The consequence of this evolutionarily suboptimal design is that humans are dependent on cardiovascular perfusion, and therefore highly susceptible to alterations in its normal function. However, hope may be at hand. “Photosynthetic strategies,” based on the recognition that photosynthesis is the source of all oxygen, offer a revolutionary and promising solution to pathologies related to tissue hypoxia. These approaches, which have been under development over the past 20 years, seek to harness photosynthetic microorganisms as a local and controllable source of oxygen to circumvent the need for blood perfusion to sustain tissue survival. To date, their applications extend from the in vitro creation of artificial human tissues to the photosynthetic maintenance of oxygen-deprived organs both in vivo and ex vivo, while their potential use in other medical approaches has just begun to be explored. This review provides an overview of the state of the art of photosynthetic technologies and its innovative applications, as well as an expert assessment of the major challenges and how they can be addressed.
- ItemPlants as a cost‐effective source for customizable photosynthetic wound dressings: A proof of concept study(2024) González Itier, Sergio Andrés; Miranda, Miguel; Corrales‐Orovio, Rocío; Vera, Constanza; Veloso‐Giménez, Valentina; Cárdenas Calderón, Camila Valentina; Egaña, José TomásOxygen is essential for tissue regeneration, playing a crucial role in several processes, including cell metabolism and immune response. Therefore, the delivery of oxygen to wounds is an active field of research, and recent studies have highlighted the potential use of photosynthetic biomaterials as alternative oxygenation approach. However, while plants have traditionally been used to enhance tissue regeneration, their potential to produce and deliver local oxygen to wounds has not yet been explored. Hence, in this work we studied the oxygen-releasing capacity of Marchantia polymorpha explants, showing their capacity to release oxygen under different illumination settings and temperatures. Moreover, co-culture experiments revealed that the presence of these explants had no adverse effects on the viability and morphology of fibroblasts in vitro, nor on the viability of zebrafish larvae in vivo. Furthermore, oxygraphy assays demonstrate that these explants could fulfill the oxygen metabolic requirements of zebrafish larvae and freshly isolated skin biopsies ex vivo. Finally, the biocompatibility of explants was confirmed through a human skin irritation test conducted in healthy volunteers following the ISO-10993-10-2010. This proof-of-concept study provides valuable scientific insights, proposing the potential use of freshly isolated plants as biocompatible low-cost oxygen delivery systems for wound healing and tissue regeneration.
- ItemTowards an In Vitro 3D Model for Photosynthetic Cancer Treatment: A Study of Microalgae and Tumor Cell Interactions(2022) Holmes, Christopher; Varas Muñoz, Juan Francisco; Sebastián, San Martin; Egaña, José Tomás
- ItemUse of photosynthetic transgenic cyanobacteria to promote lymphangiogenesis in scaffolds for dermal regeneration(2021) Chávez, Myra N.; Fuchs, Benedikt; Moellhoff, Nicholas; Hofmann, Daniel; Zhang, Lifang; Selão, Tiago Toscano; Giunta, Riccardo E.; Egaña, José Tomás; Nickelsen, Jörg; Schenck, Thilo L.Impaired wound healing represents an unsolved medical need with a high impact on patients´ quality of life and global health care. Even though its causes are diverse, ischemic-hypoxic conditions and exacerbated inflammation are shared pathological features responsible for obstructing tissue restoration. In line with this, it has been suggested that promoting a normoxic pro-regenerative environment and accelerating inflammation resolution, by reinstating the lymphatic fluid transport, could allow the wound healing process to be resumed. Our group was first to demonstrate the functional use of scaffolds seeded with photosynthetic microorganisms to supply tissues with oxygen. Moreover, we previously proposed a photosynthetic gene therapy strategy to create scaffolds that deliver other therapeutic molecules, such as recombinant human growth factors into the wound area. In the present work, we introduce the use of transgenic Synechococcus sp. PCC 7002 cyanobacteria (SynHA), which can produce oxygen and lymphangiogenic hyaluronic acid, in photosynthetic biomaterials. We show that the co-culture of lymphatic endothelial cells with SynHA promotes their survival and proliferation under hypoxic conditions. Also, hyaluronic acid secreted by the cyanobacteria enhanced their lymphangiogenic potential as shown by changes to their gene expression profile, the presence of lymphangiogenic protein markers and their capacity to build lymph vessel tubes. Finally, by seeding SynHA into collagen-based dermal regeneration materials, we developed a viable photosynthetic scaffold that promotes lymphangiogenesis in vitro under hypoxic conditions. The results obtained in this study lay the groundwork for future tissue engineering applications using transgenic cyanobacteria that could become a therapeutic alternative for chronic wound treatment. STATEMENT OF SIGNIFICANCE: In this study, we introduce the use of transgenic Synechococcus sp. PCC 7002 (SynHA) cyanobacteria, which were genetically engineered to produce hyaluronic acid, to create lymphangiogenic photosynthetic scaffolds for dermal regeneration. Our results confirmed that SynHA cyanobacteria maintain their photosynthetic capacity under standard human cell culture conditions and efficiently proliferate when seeded inside fibrin-collagen scaffolds. Moreover, we show that SynHA supported the viability of co-cultured lymphatic endothelial cells (LECs) under hypoxic conditions by providing them with photosynthetic-derived oxygen, while cyanobacteria-derived hyaluronic acid stimulated the lymphangiogenic capacity of LECs. Since tissue hypoxia and impaired lymphatic drainage are two key factors that directly affect wound healing, our results suggest that lymphangiogenic photosynthetic biomaterials could become a treatment option for chronic wound management.
- ItemZebrafish as an emerging model organism to study angiogenesis in development and regeneration(2016) Chávez, Myra; Aedo, Geraldine; Fierro, Fernando; Allende, Miguel; Egaña, José TomásAngiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.