Browsing by Author "Erices, Rafaela."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAngiogenic, hyperpermeability and vasodilator network in utero-placental units along pregnancy in the guinea-pig (Cavia porcellus)(2008) Valdés Quezada, Gloria.; Erices, Rafaela.; Chacón, Cecilia; Corthorn H., JennyAbstract Background The angiogenic and invasive properties of the cytotrophoblast are crucial to provide an adequate area for feto-maternal exchange. The present study aimed at identifying the localization of interrelated angiogenic, hyperpermeability and vasodilator factors in the feto-maternal interface in pregnant guinea-pigs. Methods Utero-placental units were collected from early to term pregnancy. VEGF, Flt-1, KDR, B2R and eNOS were analyzed by immunohistochemistry, and the intensity of the signals in placenta and syncytial streamers was digitally analysed. Flt1 and eNOS content of placental homogenates was determined by western blotting. Statistical analysis used one-way analysis of variance and Tukey's Multiple Comparison post-hoc test. Results In the subplacenta, placental interlobium and labyrinth VEGF, Flt-1, KDR, B2R and eNOS were expressed in all stages of pregnancy. Syncytial streamers in all stages of gestation, and cytotrophoblasts surrounding myometrial arteries in early and mid pregnancy – and replacing the smooth muscle at term – displayed immunoreactivity for VEGF, Flt-1, KDR, eNOS and B2R. In partly disrupted mesometrial arteries in late pregnancy cytotrophoblasts and endothelial cells expressed VEGF, Flt-1, KDR, B2R and eNOS. Sections incubated in absence of the first antibody, or in presence of rabbit IgG fraction and mouse IgG serum, yielded no staining. According to the digital analysis, Flt-1 increased in the placental interlobium in days 40 and 60 as compared to day 20 (P = 0.016), and in the labyrinth in day 60 as compared to days 20 and 40 (P = 0.026), while the signals for VEGF, KDR, B2R, and eNOS showed no variations along pregnancy. In syncytial streamers the intensity of VEGF immunoreactivity was increased in day 40 in comparison to day 20 (P = 0.027), while that of B2R decreased in days 40 and 60 as compared to day 20 (P = 0.011); VEGF, Flt-1, KDR, B2R and eNOS expression showed no variations. Western blots for eNOS and Flt-1 in placental homogenates showed no significant temporal differences along pregnancy. Conclusion The demonstration of different angiogenic, hyperpermeability and vasodilator factors in the same cellular protagonists of angiogenesis and invasion in the pregnant guinea-pig, supports the presence of a functional network, and strengthens the argument that this species provides an adequate model to understand human pregnancy.Abstract Background The angiogenic and invasive properties of the cytotrophoblast are crucial to provide an adequate area for feto-maternal exchange. The present study aimed at identifying the localization of interrelated angiogenic, hyperpermeability and vasodilator factors in the feto-maternal interface in pregnant guinea-pigs. Methods Utero-placental units were collected from early to term pregnancy. VEGF, Flt-1, KDR, B2R and eNOS were analyzed by immunohistochemistry, and the intensity of the signals in placenta and syncytial streamers was digitally analysed. Flt1 and eNOS content of placental homogenates was determined by western blotting. Statistical analysis used one-way analysis of variance and Tukey's Multiple Comparison post-hoc test. Results In the subplacenta, placental interlobium and labyrinth VEGF, Flt-1, KDR, B2R and eNOS were expressed in all stages of pregnancy. Syncytial streamers in all stages of gestation, and cytotrophoblasts surrounding myometrial arteries in early and mid pregnancy – and replacing the smooth muscle at term – displayed immunoreactivity for VEGF, Flt-1, KDR, eNOS and B2R. In partly disrupted mesometrial arteries in late pregnancy cytotrophoblasts and endothelial cells expressed VEGF, Flt-1, KDR, B2R and eNOS. Sections incubated in absence of the first antibody, or in presence of rabbit IgG fraction and mouse IgG serum, yielded no staining. According to the digital analysis, Flt-1 increased in the placental interlobium in days 40 and 60 as compared to day 20 (P = 0.016), and in the labyrinth in day 60 as compared to days 20 and 40 (P = 0.026), while the signals for VEGF, KDR, B2R, and eNOS showed no variations along pregnancy. In syncytial streamers the intensity of VEGF immunoreactivity was increased in day 40 in comparison to day 20 (P = 0.027), while that of B2R decreased in days 40 and 60 as compared to day 20 (P = 0.011); VEGF, Flt-1, KDR, B2R and eNOS expression showed no variations. Western blots for eNOS and Flt-1 in placental homogenates showed no significant temporal differences along pregnancy. Conclusion The demonstration of different angiogenic, hyperpermeability and vasodilator factors in the same cellular protagonists of angiogenesis and invasion in the pregnant guinea-pig, supports the presence of a functional network, and strengthens the argument that this species provides an adequate model to understand human pregnancy.Abstract Background The angiogenic and invasive properties of the cytotrophoblast are crucial to provide an adequate area for feto-maternal exchange. The present study aimed at identifying the localization of interrelated angiogenic, hyperpermeability and vasodilator factors in the feto-maternal interface in pregnant guinea-pigs. Methods Utero-placental units were collected from early to term pregnancy. VEGF, Flt-1, KDR, B2R and eNOS were analyzed by immunohistochemistry, and the intensity of the signals in placenta and syncytial streamers was digitally analysed. Flt1 and eNOS content of placental homogenates was determined by western blotting. Statistical analysis used one-way analysis of variance and Tukey's Multiple Comparison post-hoc test. Results In the subplacenta, placental interlobium and labyrinth VEGF, Flt-1, KDR, B2R and eNOS were expressed in all stages of pregnancy. Syncytial streamers in all stages of gestation, and cytotrophoblasts surrounding myometrial arteries in early and mid pregnancy – and replacing the smooth muscle at term – displayed immunoreactivity for VEGF, Flt-1, KDR, eNOS and B2R. In partly disrupted mesometrial arteries in late pregnancy cytotrophoblasts and endothelial cells expressed VEGF, Flt-1, KDR, B2R and eNOS. Sections incubated in absence of the first antibody, or in presence of rabbit IgG fraction and mouse IgG serum, yielded no staining. According to the digital analysis, Flt-1 increased in the placental interlobium in days 40 and 60 as compared to day 20 (P = 0.016), and in the labyrinth in day 60 as compared to days 20 and 40 (P = 0.026), while the signals for VEGF, KDR, B2R, and eNOS showed no variations along pregnancy. In syncytial streamers the intensity of VEGF immunoreactivity was increased in day 40 in comparison to day 20 (P = 0.027), while that of B2R decreased in days 40 and 60 as compared to day 20 (P = 0.011); VEGF, Flt-1, KDR, B2R and eNOS expression showed no variations. Western blots for eNOS and Flt-1 in placental homogenates showed no significant temporal differences along pregnancy. Conclusion The demonstration of different angiogenic, hyperpermeability and vasodilator factors in the same cellular protagonists of angiogenesis and invasion in the pregnant guinea-pig, supports the presence of a functional network, and strengthens the argument that this species provides an adequate model to understand human pregnancy.Abstract Background The angiogenic and invasive properties of the cytotrophoblast are crucial to provide an adequate area for feto-maternal exchange. The present study aimed at identifying the localization of interrelated angiogenic, hyperpermeability and vasodilator factors in the feto-maternal interface in pregnant guinea-pigs. Methods Utero-placental units were collected from early to term pregnancy. VEGF, Flt-1, KDR, B2R and eNOS were analyzed by immunohistochemistry, and the intensity of the signals in placenta and syncytial streamers was digitally analysed. Flt1 and eNOS content of placental homogenates was determined by western blotting. Statistical analysis used one-way analysis of variance and Tukey's Multiple Comparison post-hoc test. Results In the subplacenta, placental interlobium and labyrinth VEGF, Flt-1, KDR, B2R and eNOS were expressed in all stages of pregnancy. Syncytial streamers in all stages of gestation, and cytotrophoblasts surrounding myometrial arteries in early and mid pregnancy – and replacing the smooth muscle at term – displayed immunoreactivity for VEGF, Flt-1, KDR, eNOS and B2R. In partly disrupted mesometrial arteries in late pregnancy cytotrophoblasts and endothelial cells expressed VEGF, Flt-1, KDR, B2R and eNOS. Sections incubated in absence of the first antibody, or in presence of rabbit IgG fraction and mouse IgG serum, yielded no staining. According to the digital analysis, Flt-1 increased in the placental interlobium in days 40 and 60 as compared to day 20 (P = 0.016), and in the labyrinth in day 60 as compared to days 20 and 40 (P = 0.026), while the signals for VEGF, KDR, B2R, and eNOS showed no variations along pregnancy. In syncytial streamers the intensity of VEGF immunoreactivity was increased in day 40 in comparison to day 20 (P = 0.027), while that of B2R decreased in days 40 and 60 as compared to day 20 (P = 0.011); VEGF, Flt-1, KDR, B2R and eNOS expression showed no variations. Western blots for eNOS and Flt-1 in placental homogenates showed no significant temporal differences along pregnancy. Conclusion The demonstration of different angiogenic, hyperpermeability and vasodilator factors in the same cellular protagonists of angiogenesis and invasion in the pregnant guinea-pig, supports the presence of a functional network, and strengthens the argument that this species provides an adequate model to understand human pregnancy.Abstract Background The angiogenic and invasive properties of the cytotrophoblast are crucial to provide an adequate area for feto-maternal exchange. The present study aimed at identifying the localization of interrelated angiogenic, hyperpermeability and vasodilator factors in the feto-maternal interface in pregnant guinea-pigs. Methods Utero-placental units were collected from early to term pregnancy. VEGF, Flt-1, KDR, B2R and eNOS were analyzed by immunohistochemistry, and the intensity of the signals in placenta and syncytial streamers was digitally analysed. Flt1 and eNOS content of placental homogenates was determined by western blotting. Statistical analysis used one-way analysis of variance and Tukey's Multiple Comparison post-hoc test. Results In the subplacenta, placental interlobium and labyrinth VEGF, Flt-1, KDR, B2R and eNOS were expressed in all stages of pregnancy. Syncytial streamers in all stages of gestation, and cytotrophoblasts surrounding myometrial arteries in early and mid pregnancy – and replacing the smooth muscle at term – displayed immunoreactivity for VEGF, Flt-1, KDR, eNOS and B2R. In partly disrupted mesometrial arteries in late pregnancy cytotrophoblasts and endothelial cells expressed VEGF, Flt-1, KDR, B2R and eNOS. Sections incubated in absence of the first antibody, or in presence of rabbit IgG fraction and mouse IgG serum, yielded no staining. According to the digital analysis, Flt-1 increased in the placental interlobium in days 40 and 60 as compared to day 20 (P = 0.016), and in the labyrinth in day 60 as compared to days 20 and 40 (P = 0.026), while the signals for VEGF, KDR, B2R, and eNOS showed no variations along pregnancy. In syncytial streamers the intensity of VEGF immunoreactivity was increased in day 40 in comparison to day 20 (P = 0.027), while that of B2R decreased in days 40 and 60 as compared to day 20 (P = 0.011); VEGF, Flt-1, KDR, B2R and eNOS expression showed no variations. Western blots for eNOS and Flt-1 in placental homogenates showed no significant temporal differences along pregnancy. Conclusion The demonstration of different angiogenic, hyperpermeability and vasodilator factors in the same cellular protagonists of angiogenesis and invasion in the pregnant guinea-pig, supports the presence of a functional network, and strengthens the argument that this species provides an adequate model to understand human pregnancy.
- ItemBradykinin promotes migration and invasion of human immortalized trophoblasts(2011) Erices, Rafaela.; Corthorn H., Jenny; Lisboa, Francisco.; Valdés Stromilli, GloriaAbstract Having demonstrated that the bradykinin B2 receptor (B2R) is expressed in cells that participate in trophoblast invasion in humans and guinea-pigs, we investigated the role of bradykinin (BK) on cell migration and invasion in the HTR-8/SVneo trophoblast cell line using wound healing and invasion assays. First, we documented that HTR-8/SVneo cells expressed kallikrein, B2R, B1R, MMP-2 and MMP-9 using immunocytochemistry. Incubation with BK (10.0 microMol/L) for 18 hours increased the migration index 3-fold in comparison to controls or to cells preincubated with the B2R antagonist HOE-140. BK (10.0 microMol/L) incubation yielded a similar number of proliferating and viable cells as controls, therefore the enhanced closure of the wound cannot be attributed to proliferating cells. Incubation with BK (10.0 microMol/L) for 18 hours increased the invasion index 2-fold in comparison to controls or to cells preincubated with the antagonist of the B2R. Neither the B1R ligand Lys-des-Arg9 BK, nor its antagonist Lys-(des-Arg9-Leu8), modified migration and invasion. Further support for the stimulatory effect of B2R activation on migration and invasion is provided by the 3-fold increase in the number of filopodia per cell versus controls or cells preincubated with the B2R antagonist. Bradykinin had no effect on the cellular protein content of the B2R, nor the MMP-9 and MMP-2 gelatinase activity in the culture media varied after incubation with BK. This study adds bradykinin-acting on the B2R-to the stimuli of trophoblast migration and invasion, an effect that should be integrated to other modifications of the kallikrein-kinin system in normal and pathological pregnancies.
- ItemPlatelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells.(2015) Orellana, Renan.; Kato Cardemil, Sumie Rode; Erices, Rafaela.; Bravo Castillo, María Loreto; González Hevia, Pamela Andrea.; Oliva, Bárbara.; Cubillos Alfaro, Sofía María Jesús.; Valdivia Román, Andrés Felipe; Brañes, Jorge; Cuello F., Mauricio; Ibañez, Carolina; Barriga Cosmelli, María Isabel; Bravo, Erasmo.; Alonso, Catalina.; Bustamente, Eva.; Castellon, Enrique.; Hidalgo, Patricia.; Trigo, Cesar.; Panes Becerra, Olga Teresa; Pereira Garcés, Jaime Ignacio; Mezzano, Diego; Owen, Gareth IvorAbstract Background An increase in circulating platelets, or thrombocytosis, is recognized as an independent risk factor of bad prognosis and metastasis in patients with ovarian cancer; however the complex role of platelets in tumor progression has not been fully elucidated. Platelet activation has been associated with an epithelial to mesenchymal transition (EMT), while Tissue Factor (TF) protein expression by cancer cells has been shown to correlate with hypercoagulable state and metastasis. The aim of this work was to determine the effect of platelet-cancer cell interaction on TF and “Metastasis Initiating Cell (MIC)” marker levels and migration in ovarian cancer cell lines and cancer cells isolated from the ascetic fluid of ovarian cancer patients. Methods With informed patient consent, ascitic fluid isolated ovarian cancer cells, cell lines and ovarian cancer spheres were co-cultivated with human platelets. TF, EMT and stem cell marker levels were determined by Western blotting, flow cytometry and RT-PCR. Cancer cell migration was determined by Boyden chambers and the scratch assay. Results The co-culture of patient-derived ovarian cancer cells with platelets causes: 1) a phenotypic change in cancer cells, 2) chemoattraction and cancer cell migration, 3) induced MIC markers (EMT/stemness), 3) increased sphere formation and 4) increased TF protein levels and activity. Conclusions We present the first evidence that platelets act as chemoattractants to cancer cells. Furthermore, platelets promote the formation of ovarian cancer spheres that express MIC markers and the metastatic protein TF. Our results suggest that platelet-cancer cell interaction plays a role in the formation of metastatic foci.