Browsing by Author "Farias-Jofre, Marcelo"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemA key role for NLRP3 signaling in preterm labor and birth driven by the alarmin S100B(2023) Galaz, Jose; Motomura, Kenichiro; Romero, Roberto; Liu, Zhenjie; Garcia-Flores, Valeria; Tao, Li; Xu, Yi; Done, Bogdan; Arenas-Hernandez, Marcia; Kanninen, Tomi; Farias-Jofre, Marcelo; Miller, Derek; Tarca, Adi L.; Gomez-Lopez, NardhyPreterm birth remains the leading cause of neonatal morbidity and mortality worldwide. A substantial number of spontaneous preterm births occur in the context of sterile intra-amniotic inflammation, a condition that has been mechanistically proven to be triggered by alarmins. However, sterile intra-amniotic inflammation still lacks treatment. The NLRP3 inflammasome has been implicated in sterile intra-amniotic inflammation; yet, its underlying mechanisms, as well as the maternal and fetal contributions to this signaling pathway, are unclear. Herein, by utilizing a translational and clinically relevant model of alarmin-induced preterm labor and birth in Nlrp3-/- mice, we investigated the role of NLRP3 signaling by using imaging and molecular biology approaches. Nlrp3 deficiency abrogated preterm birth and the resulting neonatal mortality induced by the alarmin S100B by impeding the premature activation of the common pathway of labor as well as by dampening intra-amniotic and fetal inflammation. Moreover, Nlrp3 deficiency altered leukocyte infiltration and functionality in the uterus and decidua. Last, embryo transfer revealed that maternal and fetal Nlrp3 signaling contribute to alarmin-induced preterm birth and neonatal mortality, further strengthening the concept that both individuals participate in the complex process of preterm parturition. These findings provide novel insights into sterile intra-amniotic inflammation, a common etiology of preterm labor and birth, suggesting that the adverse perinatal outcomes resulting from prematurity can be prevented by targeting NLRP3 signaling.
- ItemBlockade of IL-6R prevents preterm birth and adverse neonatal outcomes(2023) Farias-Jofre, Marcelo; Romero, Roberto; Galaz, Jose; Xu, Yi; Miller, Derek; Garcia-Flores, Valeria; Arenas-Hernandez, Marcia; Winters, Andrew D.; Berkowitz, Bruce A.; Podolsky, Robert H.; Shen, Yimin; Kanninen, Tomi; Panaitescu, Bogdan; Glazier, Catherine R.; Pique-Regi, Roger; Theis, Kevin R.; Gomez-Lopez, NardhyBackground Preterm birth preceded by spontaneous preterm labour often occurs in the clinical setting of sterile intra-amniotic inflammation (SIAI), a condition that currently lacks treatment.Methods Proteomic and scRNA-seq human data were analysed to evaluate the role of IL-6 and IL-1 alpha in SIAI. A C57BL/6 murine model of SIAI-induced preterm birth was developed by the ultrasound-guided intra-amniotic injection of IL-1 alpha. The blockade of IL-6R by using an aIL-6R was tested as prenatal treatment for preterm birth and adverse neonatal outcomes. QUEST-MRI evaluated brain oxidative stress in utero. Targeted transcriptomic profiling assessed maternal, foetal, and neonatal inflammation. Neonatal biometrics and neurodevelopment were tested. The neonatal gut immune-microbiome was evaluated using metagenomic sequencing and immunophenotyping.Findings IL-6 plays a critical role in the human intra-amniotic inflammatory response, which is associated with elevated concentrations of the alarmin IL-1 alpha. Intra-amniotic injection of IL-1 alpha resembles SIAI, inducing preterm birth (7% vs. 50%, p = 0.03, Fisher's exact test) and neonatal mortality (18% vs. 56%, p = 0.02, Mann-Whitney U-test). QUEST-MRI revealed no foetal brain oxidative stress upon in utero IL-1 alpha exposure (p > 0.05, mixed linear model). Prenatal treatment with aIL-6R abrogated IL-1 alpha-induced preterm birth (50% vs. 7%, p = 0.03, Fisher's exact test) by dampening inflammatory processes associated with the common pathway of labour. Importantly, aIL-6R reduces neonatal mortality (56% vs. 22%, p = 0.03, Mann-Whitney U-test) by crossing from the mother to the amniotic cavity, dampening foetal organ inflammation and improving growth. Beneficial effects of prenatal IL -6R blockade carried over to neonatal life, improving survival, growth, neurodevelopment, and gut immune homeostasis.Interpretation IL-6R blockade can serve as a strategy to treat SIAI, preventing preterm birth and adverse neonatal outcomes.
- ItemFetal and maternal NLRP3 signaling is required for preterm labor and birth(AMER SOC CLINICAL INVESTIGATION INC, 2022) Motomura, Kenichiro; Romero, Roberto; Galaz, Jose; Tao, Li; Garcia-Flores, Valeria; Xu, Yi; Done, Bogdan; Arenas-Hernandez, Marcia; Miller, Derek; Gutierrez-Contreras, Pedro; Farias-Jofre, Marcelo; Aras, Siddhesh; Grossman, Lawrence, I; Tarca, Adi L.; Gomez-Lopez, NardhyPreterm birth is the leading cause of neonatal morbidity and mortality worldwide. One of every 4 preterm neonates is born to a mother with intra-amniotic inflammation driven by invading bacteria. However, the molecular mechanisms underlying this hostile immune response remain unclear. Here, we used a translationally relevant model of preterm birth in Nlrp3-deficient and-sufficient pregnant mice to identify what we believe is a previously unknown dual role for the NLRP3 pathway in the fetal and maternal signaling required for the premature onset of the labor cascade leading to fetal injury and neonatal death. Specifically, the NLRP3 sensor molecule and/or inflammasome is essential for triggering intra-amniotic and decidual inflammation, fetal membrane activation, uterine contractility, and cervical dilation. NLRP3 also regulates the functional status of neutrophils and macrophages in the uterus and decidua, without altering their influx, as well as maternal systemic inflammation. Finally, both embryo transfer experimentation and heterozygous mating systems provided mechanistic evidence showing that NLRP3 signaling in both the fetus and the mother is required for the premature activation of the labor cascade. These data provide insights into the mechanisms of fetal-maternal dialog in the syndrome of preterm labor and indicate that targeting the NLRP3 pathway could prevent adverse perinatal outcomes.
- ItemHost-microbiome interactions in distinct subsets of preterm labor and birth(2023) Galaz, Jose; Romero, Roberto; Greenberg, Jonathan M.; Theis, Kevin R.; Arenas-Hernandez, Marcia; Xu, Yi; Farias-Jofre, Marcelo; Miller, Derek; Kanninen, Tomi; Garcia-Flores, Valeria; Gomez-Lopez, NardhyPreterm birth, the leading cause of perinatal morbidity, often follows premature labor, a syndrome whose prevention remains a challenge. To better understand the relationship between premature labor and host-microbiome interactions, we conducted a mechanistic investigation using three preterm birth models. We report that intra-amniotic delivery of LPS triggers inflammatory responses in the amniotic cavity and cervico-vaginal microenvironment, causing vaginal microbiome changes and signs of active labor. Intra-amniotic IL-1 alpha delivery causes a moderate inflammatory response in the amniotic cavity but increasing inflammation in the cervico-vaginal space, leading to vaginal microbiome disruption and signs of active labor. Conversely, progesterone action blockade by RU-486 triggers local immune responses accompanying signs of active labor without altering the vaginal microbiome. Preterm labor facilitates ascension of cervico-vaginal bacteria into the amniotic cavity, regardless of stimulus. This study provides compelling mechanistic insights into the dynamic host-microbiome interactions within the cervico-vaginal microenvironment that accompany premature labor and birth.
- ItemPregnancy imparts distinct systemic adaptive immune function(WILEY, 2022) Demery-Poulos, Catherine; Romero, Roberto; Xu, Yi; Arenas-Hernandez, Marcia; Miller, Derek; Tao, Li; Galaz, Jose; Farias-Jofre, Marcelo; Bhatti, Gaurav; Garcia-Flores, Valeria; Seyerle, Megan; Tarca, Adi L.; Gomez-Lopez, NardhyProblem Pregnancy represents a state of systemic immune activation that is primarily driven by alterations in circulating innate immune cells. Recent studies have suggested that cellular adaptive immune components, T cells and B cells, also undergo changes throughout gestation. However, the phenotypes and functions of such adaptive immune cells are poorly understood. Herein, we utilized high-dimensional flow cytometry and functional assays to characterize T-cell and B-cell responses in pregnant and non-pregnant women. Methods Peripheral blood mononuclear cells from pregnant (n = 20) and non-pregnant (n = 25) women were used for phenotyping of T-cell and B-cell subsets. T-cell proliferation and B-cell activation were assessed by flow cytometry after in vitro stimulation, and lymphocyte cytotoxicity was evaluated by using a cell-based assay. Statistical comparisons were performed with linear mixed-effects models. Results Pregnancy was associated with modestly enhanced basal activation of peripheral CD4(+) T cells. Both CD4(+) and CD8(+) T cells from pregnant women showed increased activation-induced proliferation; yet, a reduced proportion of these cells expressed activation markers compared to non-pregnant women. There were no differences in peripheral lymphocyte cytotoxicity between study groups. A greater proportion of B cells from pregnant women displayed memory-like and activated phenotypes, and such cells exhibited higher activation following stimulation. Conclusion Maternal circulating T cells and B cells display distinct responses during pregnancy. The former may reflect the unique capacity of T cells to respond to potential threats without undergoing aberrant activation, thereby preventing systemic inflammatory responses that can lead to adverse perinatal consequences.
- ItemPregnancy tailors endotoxin-induced monocyte and neutrophil responses in the maternal circulation(SPRINGER BASEL AG, 2022) Farias-Jofre, Marcelo; Romero, Roberto; Galaz, Jose; Xu, Yi; Tao, Li; Demery-Poulos, Catherine; Arenas-Hernandez, Marcia; Bhatti, Gaurav; Liu, Zhenjie; Kawahara, Naoki; Kanninen, Tomi; Shaffer, Zachary; Chaiworapongsa, Tinnakorn; Theis, Kevin R.; Tarca, Adi L.; Gomez-Lopez, NardhyObjective To comprehensively characterize monocyte and neutrophil responses to E. coli and its product [lipopolysaccharide (LPS) or endotoxin] in vitro during pregnancy.