Browsing by Author "Fernandez, Paola"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemA physiologic rise in cytoplasmic calcium ion signal increases pannexin1 channel activity via a C-terminus phosphorylation by CaMKII(2021) Lopez, Ximena; Palacios-Prado, Nicolas; Guiza, Juan; Escamilla, Rosalba; Fernandez, Paola; Vega, Jose L.; Rojas, Maximiliano; Marquez-Miranda, Valeria; Chamorro, Eduardo; Cardenas, Ana M.; Maldifassi, Maria Constanza; Martinez, Agustin D.; Duarte, Yorley; Gonzalez-Nilo, Fernando D.; Saez, Juan C.Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation- measured by changes in DAPI uptake rate-was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1EGFP and rPanx1S394D-EGFP channels showed current at all voltages between +/- 100 mV, similar single channel currents with outward rectification, and unitary conductance (similar to 30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.
- ItemActive acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation(2020) Cisterna, Bruno A.; Vargas, Anibal A.; Puebla, Carlos; Fernandez, Paola; Escamilla, Rosalba; Lagos, Carlos F.; Matus, Maria F.; Vilos, Cristian; Cea, Luis A.; Barnafi, Esteban; Gaete, Hugo; Escobar, Daniel F.; Cardozo, Christopher P.; Saez, Juan C.Denervation of skeletal muscles induces severe muscle atrophy, which is preceded by cellular alterations such as increased plasma membrane permeability, reduced resting membrane potential and accelerated protein catabolism. The factors that induce these changes remain unknown. Conversely, functional recovery following denervation depends on successful reinnervation. Here, we show that activation of nicotinic acetylcholine receptors (nAChRs) by quantal release of acetylcholine (ACh) from motoneurons is sufficient to prevent changes induced by denervation. Using in vitro assays, ACh and non-hydrolysable ACh analogs repressed the expression of connexin43 and connexin45 hemichannels, which promote muscle atrophy. In co-culture studies, connexin43/45 hemichannel knockout or knockdown increased innervation of muscle fibers by dorsal root ganglion neurons. Our results show that ACh released by motoneurons exerts a hitherto unknown function independent of myofiber contraction. nAChRs and connexin hemichannels are potential molecular targets for therapeutic intervention in a variety of pathological conditions with reduced synaptic neuromuscular transmission.
- ItemAngiotensin II-Induced Mesangial Cell Damage Is Preceded by Cell Membrane Permeabilization Due to Upregulation of Non-Selective Channels(2018) Gomez, Gonzalo, I; Fernandez, Paola; Velarde, Victoria; Sáez, Juan Carlos
- ItemExcessive release of inorganic polyphosphate by ALS/FTD astrocytes causes non-cell-autonomous toxicity to motoneurons(2022) Arredondo, Cristian; Cefaliello, Carolina; Dyrda, Agnieszka; Jury, Nur; Martinez, Pablo; Diaz, Ivan; Amaro, Armando; Tran, Helene; Morales, Danna; Pertusa, Maria; Stoica, Lorelei; Fritz, Elsa; Corvalan, Daniela; Abarzua, Sebastian; Mendez-Ruette, Maxs; Fernandez, Paola; Rojas, Fabiola; Kumar, Meenakshi Sundaram; Aguilar, Rodrigo; Almeida, Sandra; Weiss, Alexandra; Bustos, Fernando J.; Gonzalez-Nilo, Fernando; Otero, Carolina; Tevy, Maria Florencia; Bosco, Daryl A.; Saez, Juan C.; Kahne, Thilo; Gao, Fen-Biao; Berry, James D.; Nicholson, Katharine; Sena-Esteves, Miguel; Madrid, Rodolfo; Varela, Diego; Montecino, Martin; Brown, Robert H.; van Zundert, BrigitteNon-cell-autonomous mechanisms contribute to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), in which astrocytes release unidentified factors that are toxic to motoneurons (MNs). We report here that mouse and patient iPSC-derived astrocytes with diverse ALS/FTD-linked mutations (SOD1, TARDBP, and C9ORF72) display elevated levels of intracellular inorganic polyphosphate (polyP), a ubiquitous, negatively charged biopolymer. PolyP levels are also increased in astrocyte-conditioned media (ACM) from ALS/FTD astrocytes. ACM-mediated MN death is prevented by degrading or neutralizing polyP in ALS/FTD astrocytes or ACM. Studies further reveal that postmortem familial and sporadic ALS spinal cord sections display enriched polyP staining signals and that ALS cerebrospinal fluid (CSF) exhibits increased polyP concentrations. Our in vitro results establish excessive astrocyte-derived polyP as a critical factor in non-cell-autonomous MN degeneration and a potential therapeutic target for ALS/ FTD. The CSF data indicate that polyP might serve as a new biomarker for ALS/FTD.
- ItemTNF-α Plus IL-1β Induces Opposite Regulation of Cx43 Hemichannels and Gap Junctions in Mesangial Cells through a RhoA/ROCK-Dependent Pathway(2022) Lucero, Claudia M.; Marambio-Ruiz, Lucas; Balmazabal, Javiera; Prieto Villalobos, Juan Carlos; Leon, Marcelo; Fernandez, Paola; Orellana Roca, Juan Andrés; Velarde Aliaga, María Victoria; Saez, Juan C.; Gomez, Gonzalo, IConnexin 43 (Cx43) is expressed in kidney tissue where it forms hemichannels and gap junction channels. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remains unknown. Here, analysis of ethidium uptake and thiobarbituric acid reactive species revealed that treatment with TNF-alpha plus IL-1 beta increases Cx43 hemichannel activity and oxidative stress in MES-13 cells (a cell line derived from mesangial cells), and in primary mesangial cells. The latter was also accompanied by a reduction in gap junctional communication, whereas Western blotting assays showed a progressive increase in phosphorylated MYPT (a target of RhoA/ROCK) and Cx43 upon TNF-alpha/IL-1 beta treatment. Additionally, inhibition of RhoA/ROCK strongly antagonized the TNF-alpha/IL-1 beta-induced activation of Cx43 hemichannels and reduction in gap junctional coupling. We propose that activation of Cx43 hemichannels and inhibition of cell-cell coupling during pro-inflammatory conditions could contribute to oxidative stress and damage of mesangial cells via the RhoA/ROCK pathway.