Browsing by Author "Frinchaboy, P. M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemA Perspective on the Milky Way Bulge Bar as Seen from the Neutron-capture Elements Cerium and Neodymium with APOGEE(2024) Sales-Silva, J. V.; Cunha, K.; Smith, V. V.; Daflon, S.; Souto, D.; Guerco, R.; Queiroz, A.; Chiappini, C.; Hayes, C. R.; Masseron, T.; Hasselquist, Sten; Horta, D.; Prantzos, N.; Zoccali, M.; Allende Prieto, C.; Barbuy, B.; Beaton, R.; Bizyaev, D.; Fernandez-Trincado, J. G.; Frinchaboy, P. M.; Holtzman, J. A.; Johnson, J. A.; Joensson, Henrik; Majewski, S. R.; Minniti, D.; Nidever, D. L.; Schiavon, R. P.; Schultheis, M.; Sobeck, J.; Stringfellow, G. S.; Zasowski, G.This study probes the chemical abundances of the neutron-capture elements cerium and neodymium in the inner Milky Way from an analysis of a sample of similar to 2000 stars in the Galactic bulge bar spatially contained within divided by X-Gal divided by < 5 kpc, divided by Y-Gal divided by < 3.5 kpc, and divided by Z(Gal)divided by < 1 kpc, and spanning metallicities between -2.0 less than or similar to [Fe/H] less than or similar to +0.5. We classify the sample stars into low- or high-[Mg/Fe] populations and find that, in general, values of [Ce/Fe] and [Nd/Fe] increase as the metallicity decreases for the low- and high-[Mg/Fe] populations. Ce abundances show a more complex variation across the metallicity range of our bulge-bar sample when compared to Nd, with the r-process dominating the production of neutron-capture elements in the high-[Mg/Fe] population ([Ce/Nd] < 0.0). We find a spatial chemical dependence of Ce and Nd abundances for our sample of bulge-bar stars, with low- and high-[Mg/Fe] populations displaying a distinct abundance distribution. In the region close to the center of the MW, the low-[Mg/Fe] population is dominated by stars with low [Ce/Fe], [Ce/Mg], [Nd/Mg], [Nd/Fe], and [Ce/Nd] ratios. The low [Ce/Nd] ratio indicates a significant contribution in this central region from r-process yields for the low-[Mg/Fe] population. The chemical pattern of the most metal-poor stars in our sample suggests an early chemical enrichment of the bulge dominated by yields from core-collapse supernovae and r-process astrophysical sites, such as magnetorotational supernovae.
- ItemFrom the bulge to the outer disc: monospace StarHorse monospace stellar parameters, distances, and extinctions for stars in APOGEE DR16 and other spectroscopic surveys(2020) Queiroz, A. B. A.; Anders, F.; Chiappini, C.; Khalatyan, A.; Santiago, B. X.; Steinmetz, M.; Valentini, M.; Miglio, A.; Bossini, D.; Barbuy, B.; Minchev, I; Minniti, D.; Garcia Hernandez, D. A.; Schultheis, M.; Beaton, R. L.; Beers, T. C.; Bizyaev, D.; Brownstein, J. R.; Cunha, K.; Fernandez-Trincado, J. G.; Frinchaboy, P. M.; Lane, R. R.; Majewski, S. R.; Nataf, D.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Sobeck, J. S.; Stringfellow, G.; Zamora, O.We combine high-resolution spectroscopic data from APOGEE-2 survey Data Release 16 (DR16) with broad-band photometric data from several sources as well as parallaxes from Gaia Data Release 2 (DR2). Using the Bayesian isochrone-fitting code StarHorse, we derived the distances, extinctions, and astrophysical parameters for around 388 815 APOGEE stars. We achieve typical distance uncertainties of similar to 6% for APOGEE giants, similar to 2% for APOGEE dwarfs, and extinction uncertainties of similar to 0.07 mag, when all photometric information is available, and similar to 0.17 mag if optical photometry is missing. StarHorse uncertainties vary with the input spectroscopic catalogue, available photometry, and parallax uncertainties. To illustrate the impact of our results, we show that thanks to Gaia DR2 and the now larger sky coverage of APOGEE-2 (including APOGEE-South), we obtain an extended map of the Galactic plane. We thereby provide an unprecedented coverage of the disc close to the Galactic mid-plane (|Z(Gal)| < 1 kpc) from the Galactic centre out to R-Gal20 kpc. The improvements in statistics as well as distance and extinction uncertainties unveil the presence of the bar in stellar density and the striking chemical duality in the innermost regions of the disc, which now clearly extend to the inner bulge. We complement this paper with distances and extinctions for stars in other public released spectroscopic surveys: 324 999 in GALAH DR2, 4 928 715 in LAMOST DR5, 408 894 in RAVE DR6, and 6095 in GES DR3.
- ItemThe chemical compositions of accreted and in situ galactic globular clusters according to SDSS/APOGEE(2020) Horta, D.; Schiavon, R. P.; Mackereth, J. T.; Beers, T. C.; Fernández-Trincado, J. G.; Frinchaboy, P. M.; García-Hernández, D. A.; Geisler, D.; Hasselquist, S.; Jönsson, H.; Lane Richard Reade; Majewski, S. R.; Mészáros, S.; Bidin, C. M.; Nataf, D. M.; Roman-Lopes, A.; Nitschelm, C.; Vargas-González, J.; Zasowsk, G.Studies of the kinematics and chemical compositions of Galactic globular clusters (GCs) enable the reconstruction of the history of star formation, chemical evolution, and mass assembly of the Galaxy. Using the latest data release (DR16) of the SDSS/APOGEE survey, we identify 3090 stars associated with 46 GCs. Using a previously defined kinematic association, we break the sample down into eight separate groups and examine how the kinematics-based classification maps into chemical composition space, considering only α (mostly Si and Mg) elements and Fe. Our results show that (i) the loci of both in situ and accreted subgroups in chemical space match those of their field counterparts; (ii) GCs from different individual accreted subgroups occupy the same locus in chemical space. This could either mean that they share a similar origin or that they are associated with distinct satellites which underwent similar chemical enrichment histories; (iii) the chemical compositions of the GCs associated with the low orbital energy subgroup defined by Massari and collaborators is broadly consistent with an in situ origin. However, at the low-metallicity end, the distinction between accreted and in situ populations is blurred; (iv) regarding the status of GCs whose origin is ambiguous, we conclude the following: the position in Si–Fe plane suggests an in situ origin for Liller 1 and a likely accreted origin for NGC 5904 and NGC 6388. The case of NGC 288 is unclear, as its orbital properties suggest an accretion origin, its chemical composition suggests it may have formed in situ.