Browsing by Author "Fusi, Marco"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemContrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis(2015) Baldanzi, Simone; Weidberg, Nicolas F.; Fusi, Marco; Cannicci, Stefano; McQuaid, Christopher D.; Porri, FrancescaIntegrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations. Generally, broadly distributed species show variation in thermal physiology between populations. Within their distributional ranges, populations at the edges are assumed to experience more challenging environments than central populations (fundamental niche breadth hypothesis). We have investigated differences in thermal tolerance and thermal sensitivity under increasing/decreasing temperatures among geographically separated populations of the sandhopper Talorchestia capensis along the South African coasts. We tested whether the thermal tolerance and thermal sensitivity of T. capensis differ between central and marginal populations using a non-parametric constraint space analysis. We linked thermal sensitivity to environmental history by using historical climatic data to evaluate whether individual responses to temperature could be related to natural long-term fluctuations in air temperatures. Our results demonstrate that there were significant differences in the thermal response of T. capensis populations to both increasing/decreasing temperatures. Thermal sensitivity (for increasing temperatures only) was negatively related to temperature variability and positively related to temperature predictability. Two different models fitted the geographical distribution of thermal sensitivity and thermal tolerance. Our results confirm that widespread species show differences in physiology among populations by providing evidence of contrasting thermal responses in individuals subject to different environmental conditions at the limits of the species' spatial range. When considering the complex interactions between individual physiology and species ranges, it is not sufficient to consider mean environmental temperatures, or even temperature variability; the predictability of that variability may be critical.
- ItemThe plant rhizosheath-root niche is an edaphic "mini-oasis" in hyperarid deserts with enhanced microbial competition(2022) Marasco, Ramona; Fusi, Marco; Ramond, Jean-Baptiste; Van Goethem, Marc W.; Seferji, Kholoud; Maggs-Koelling, Gillian; Cowan, Don A.; Daffonchio, DanielePlants have evolved unique morphological and developmental adaptations to cope with the abiotic stresses imposed by (hyper)arid environments. Such adaptations include the formation of rhizosheath-root system in which mutualistic plant-soil microbiome associations are established: the plant provides a nutrient-rich and shielded environment to microorganisms, which in return improve plant-fitness through plant growth promoting services. We hypothesized that the rhizosheath-root systems represent refuge niches and resource islands for the desert edaphic microbial communities. As a corollary, we posited that microorganisms compete intensively to colonize such "oasis" and only those beneficial microorganisms improving host fitness are preferentially selected by plant. Our results show that the belowground rhizosheath-root micro-environment is largely more hospitable than the surrounding gravel plain soil with higher nutrient and humidity contents, and cooler temperatures. By combining metabarcoding and shotgun metagenomics, we demonstrated that edaphic microbial biomass and community stability increased from the non-vegetated soils to the rhizosheath-root system. Concomitantly, non-vegetated soil communities favored autotrophy lifestyle while those associated with the plant niches were mainly heterotrophs and enriched in microbial plant growth promoting capacities. An intense inter-taxon microbial competition is involved in the colonization and homeostasis of the rhizosheath zone, as documented by significant enrichment of antibiotic resistance genes and CRISPR-Cas motifs. Altogether, our results demonstrate that rhizosheath-root systems are "edaphic mini-oases" and microbial diversity hotspots in hyperarid deserts. However, to colonize such refuge niches, the desert soil microorganisms compete intensively and are therefore prepared to outcompete potential rivals.