Browsing by Author "Gander, Lia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemFast Characterization of Inducible Regions of Atrial Fibrillation Models With Multi-Fidelity Gaussian Process Classification(2022) Gander, Lia; Pezzuto, Simone; Gharaviri, Ali; Krause, Rolf; Perdikaris, Paris; Sahli Costabal, FranciscoComputational models of atrial fibrillation have successfully been used to predict optimal ablation sites. A critical step to assess the effect of an ablation pattern is to pace the model from different, potentially random, locations to determine whether arrhythmias can be induced in the atria. In this work, we propose to use multi-fidelity Gaussian process classification on Riemannian manifolds to efficiently determine the regions in the atria where arrhythmias are inducible. We build a probabilistic classifier that operates directly on the atrial surface. We take advantage of lower resolution models to explore the atrial surface and combine seamlessly with high-resolution models to identify regions of inducibility. We test our methodology in 9 different cases, with different levels of fibrosis and ablation treatments, totalling 1,800 high resolution and 900 low resolution simulations of atrial fibrillation. When trained with 40 samples, our multi-fidelity classifier that combines low and high resolution models, shows a balanced accuracy that is, on average, 5.7% higher than a nearest neighbor classifier. We hope that this new technique will allow faster and more precise clinical applications of computational models for atrial fibrillation. All data and code accompanying this manuscript will be made publicly available at: https://github.com/fsahli/AtrialMFclass.
- ItemOn the Accuracy of Eikonal Approximations in Cardiac Electrophysiology in the Presence of Fibrosis(Springer, 2023) Gander, Lia; Krause, Rolf; Weiser, Martin; Sahli Costabal, Francisco; Pezzuto, SimoneFibrotic tissue is one of the main risk factors for cardiac arrhythmias. It is therefore a key component in computational studies. In this work, we compare the monodomain equation to two eikonal models for cardiac electrophysiology in the presence of fibrosis. We show that discontinuities in the conductivity field, due to the presence of fibrosis, introduce a delay in the activation times. The monodomain equation and eikonal-diffusion model correctly capture these delays, contrarily to the classical eikonal equation. Importantly, a coarse space discretization of the monodomain equation amplifies these delays, even after accounting for numerical error in conduction velocity. The numerical discretization may also introduce artificial conduction blocks and hence increase propagation complexity. Therefore, some care is required when comparing eikonal models to the discretized monodomain equation.
- ItemThe Fibrotic Kernel Signature: Simulation-Free Prediction of Atrial Fibrillation(2023) Sahli Costabal, Francisco; Banduc, Tomás; Gander, Lia; Pezzuto, SimoneWe propose a fast classifier that is able to predict atrial fibrillation inducibility in patient-specific cardiac models. Our classifier is general and it does not require re-training for new anatomies, fibrosis patterns, and ablation lines. This is achieved by training the classifier on a variant of the Heat Kernel Signature (HKS). Here, we introduce the “fibrotic kernel signature” (FKS), which extends the HKS by incorporating fibrosis information. The FKS is fast to compute, when compared to standard cardiac models like the monodomain equation. We tested the classifier on 9 combinations of ablation lines and fibrosis patterns. We achieved maximum balanced accuracies with the classifiers ranging from 75.8% to 95.8%, when tested on single points. The classifier is also able to predict very well the overall inducibility of the model. We think that our classifier can speed up the calculation of inducibility maps in a way that is crucial to create better personalized ablation treatments within the time constraints of the clinical setting.