Browsing by Author "Garrido, José Matías"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAssessing Thermodynamics Models for Phase Equilibria and Interfacial Properties Relevant to the Hydrogenation of Carbon Dioxide(American Chemical Society, 2024) Cea-Klapp, Esteban; González-Barramuño, Bastián; Gajardo-Parra, Nicolás F.; Karelovic, Alejandro; Quinteros-Lama, Héctor; Canales, Roberto I.; Garrido, José Matías© 2024 American Chemical Society.The catalytic hydrogenation of carbon dioxide has become a novel technology of economic and environmental interest that allows the production of value-added products as energy alternatives to the current demand. As product distributions are highly dependent on process conditions such as reaction temperature, pressure, and H2/CO2 ratio, it is necessary to have reliable thermodynamic models that can characterize mixtures of reactants with products over a wide range of conditions. In this contribution, the accuracy of two hydrogen models applied through equations of state (EOS) framed within variations of the statistical associating fluid theory (SAFT) is compared. These models include perturbed-chain SAFT (PC-SAFT) EOS and SAFT of variable range and Mie potential (SAFT-VR Mie) EOS. This is accomplished by the depiction of the thermodynamic behavior of mixtures of hydrogen in the context of the hydrogenation of carbon dioxide, estimating the thermodynamic behavior of the relevant mixtures. In all of the cases, zero values for the binary adjustable parameters have been implemented, and both models of hydrogen were fitted from a hydrogen+decane mixture. Available experimental data of high-pressure phase equilibria, critical loci, and interfacial tensions is used to determine the accuracy of the hydrogen models by contrasting their respective predictive capabilities, determining that the overall performance of the one applied in the SAFT-VR Mie EOS is inferior compared to the PC-SAFT one. The average absolute deviations between model calculations and experimental data for vapor-liquid equilibrium are 35.8 % (pressure), 3.10 % (liquid composition), and 2.60 % (vapor composition) for PC-SAFT, and 26.3, 3.27, and 2.65% for SAFT-VR Mie, respectively.
- ItemSeparation of furfuryl alcohol from water using hydrophobic deep eutectic solvents(2023) Cea Klapp, Esteban; Arroyo Avirama, Andrés Felipe; Ormazábal Latorre, Sebastián Alejandro; Gajardo Parra, Nicolás F.; Pazo Carballo, César Alexander; Quinteros Lama, Héctor; Marzialetti, Teresita; Held, Christoph; Canales Muñoz, Roberto; Garrido, José MatíasFurfuryl alcohol (FA) is an important organic chemical feedstock that must be separated from water to upgrade it into high-value-added products. Since FA forms an azeotrope with water, liquid-liquid extraction is a suitable option for separating both compounds. This work evaluates the separation of FA from water using hydrophobic deep eutectic solvents (DES). Three DES were prepared using menthol, thymol, and octanoic acid by combining them in molar ratio as follows: thymol + octanoic acid (1:2), menthol + octanoic acid (1:2), and thymol + menthol (1:1). Experimental liquid-liquid equilibria (LLE) of ternary systems water + FA + DES measured at 313.15 K and 101.13 kPa were used to determine the distribution coefficient and selectivity values for FA when using each DES. The experimental results were compared with molecular dynamics (MD) using Martini 3 force field and modeled using Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) without any adjustable binary parameters. According to the results, selectivities and distribution coefficients using hydrophobic DES have comparable values to traditional volatile organic compounds (VOCs) used to separate FA from water. In general, DES shows better distribution coefficients compared with typical organic solvents. According to the results, a good alternative would be menthol + octanoic acid (1:2) or thymol + menthol (1:1) to replace typical VOCs. MD and PC-SAFT provide accurate estimations for ternary LLE in the range of examined thermodynamic conditions, which confirms the predictive consistency of both approaches. Microscopic properties computed with MD simulations evidence a surface activity or absolute adsorption of FA in the interfacial region, which is correlated with favorable distribution coefficients and selectivities.