Browsing by Author "Gonzalez, Mauricio"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- ItemAssociations between bacterial communities and microplastics from surface seawater of the Northern Patagonian area of Chile(2022) Aguila-Torres, Patricia; Gonzalez, Mauricio; Maldonado, Jonathan E.; Miranda, Richard; Zhang, Liqing; Gonzalez-Stegmaier, Roxana; Rojas, Luis Antonio; Gaete, AlexisThe presence of microplastics in oceans and coastlines has increased during recent years due anthropogenic activities and represents a serious environmental problem. The establishment and assembly of microbial communities in these microplastics, specifically located near aquaculture activities, is not well understood. In this study, we analyzed unique and core members of bacterial communities attached to microplastics collected from three coastal environments of the South Pacific, which represent low, medium and high anthropogenic activity derived from the aquaculture industry. Microplastics were analyzed with Fourier-transform infrared spectroscopy, scanning electron microscopy, and next-generation sequencing to assess the prevailing microplastics types, and to characterize microbial communities attached to them. We identified four main types of microplastics (polypropylene, polyethylene, nylon and polystyrene) and 3102 Operational Taxonomic Units (OTUs) at the sampled sites, which were dominated by the phylum Cyanobacteria, Bacteroidetes and Proteobacteria (mainly Alpha and Gammaproteobacteria). Similarity index analysis showed that bacterial communities in microplastics differed from those found in the surrounding seawaters, and also that they varied among locations, suggesting a role of the environment and level of anthropogenic activities on the plastisphere taxa. Despite this difference, 222 bacterial OTUs were shared among the three sites representing between 34 and 51% of OTUs of each sampled site, and thus constituted a core microbiome of microplastics. Comparison of the core microbiome with bacterial communities of the surrounding seawater suggested that the plastisphere constituted a selective habitat for diverse microbial communities. Computational predictions also provided evidence of significantly enriched functions in the core microbiome. Co-occurrence networks revealed that putative ecological interactions among microplastics OTUs was dominated by positive correlations. To the best of our knowledge, this is the first study that evaluated the composition of microbial communities found in microplastics from the Patagonia region of the Southern Pacific Ocean.
- ItemBiochemical and Genomic Characterization of the Cypermethrin-Degrading and Biosurfactant-Producing Bacterial Strains Isolated from Marine Sediments of the Chilean Northern Patagonia(2020) Aguila-Torres, Patricia; Maldonado, Jonathan; Gaete, Alexis; Figueroa, Jaime; Gonzalez, Alex; Miranda, Richard; Gonzalez-Stegmaier, Roxana; Martin, Carolina; Gonzalez, MauricioPesticides cause severe environmental damage to marine ecosystems. In the last ten years, cypermethrin has been extensively used as an antiparasitic pesticide in the salmon farming industry located in Northern Patagonia. The objective of this study was the biochemical and genomic characterization of cypermethrin-degrading and biosurfactant-producing bacterial strains isolated from cypermethrin-contaminated marine sediment samples collected in southern Chile (MS). Eleven strains were isolated by cypermethrin enrichment culture techniques and were identified by 16S rDNA gene sequencing analyses. The highest growth rate on cypermethrin was observed in four isolates (MS13, MS15a, MS16, and MS19) that also exhibited high levels of biosurfactant production. Genome sequence analyses of these isolates revealed the presence of genes encoding components of bacterial secondary metabolism, and the enzymes esterase, pyrethroid hydrolase, and laccase, which have been associated with different biodegradation pathways of cypermethrin. These novel cypermethrin-degrading and biosurfactant-producing bacterial isolates have a biotechnological potential for biodegradation of cypermethrin-contaminated marine sediments, and their genomes contribute to the understanding of microbial lifestyles in these extreme environments.
- ItemBioprospecting of Plant Growth-Promoting Traits of Pseudomonas sp. Strain C3 Isolated from the Atacama Desert: Molecular and Culture-Based Analysis(2022) Gaete, Alexis; Andreani-Gerard, Constanza; Maldonado, Jonathan E.; Munoz-Torres, Patricio A.; Sepulveda-Chavera, German F.; Gonzalez, MauricioSoil microorganisms that inhabit extreme environments have unique metabolic capacities and/or physical structures that allow them to survive in oligotrophic conditions. The bioprospecting of unknown bacteria in the context of current advances in genome mining is fundamental for the discovery of natural products with novel properties or applications. In this study, the plant growth-promoting and biocontrol traits of a Pseudomonas isolated from soil associated with plants from the Atacama Desert were characterized by whole-genome sequencing and in vitro assays. A high-quality genome draft of Pseudomonas sp. isolate C3 was obtained. An automated biosynthetic gene cluster analysis using antiSMASH 6.0 revealed the presence of a cluster of genes for the biosynthesis, regulation, and transport of the metabolite 2,4-diacetylphloroglucinol, which showed a high protein sequence identity (>89%) with a validated orthologous gene cluster from another Pseudomonas. In addition, via an in vitro assay, the biocontrol activity of Pseudomonas sp. isolate C3 against Botrytis cinerea, Monilinia fructicola, Phytium sp., Alternaria sp., Geotrichum candidum, and Fusarium oxysporum was corroborated. Finally, through KofamKOALA, the presence of genes involved in different metabolic pathways of plant growth-promoting traits was identified, which was corroborated by in vitro assays. This study provides information obtained from genomic analyses and culture tools on a bacterial isolate from the Atacama Desert characterized by plant growth-promoting capacities and biocontrol activity.
- ItemFungal Diversity Analysis of Grape Musts from Central Valley-Chile and Characterization of Potential New Starter Cultures(2020) Mandakovic, Dinka; Pulgar, Rodrigo; Maldonado, Jonathan; Mardones, Wladimir; Gonzalez, Mauricio; Cubillos, Francisco A.; Cambiazo, VeronicaAutochthonous microorganisms are an important source of the distinctive metabolites that influence the chemical profile of wine. However, little is known about the diversity of fungal communities associated with grape musts, even though they are the source of local yeast strains with potential capacities to become starters during fermentation. By using internal transcribed spacer (ITS) amplicon sequencing, we identified the taxonomic structure of the yeast community in unfermented and fermented musts of a typicalVitis viniferaL. var. Sauvignon blanc from the Central Valley of Chile throughout two consecutive seasons of production. Unsurprisingly,Saccharomycesrepresented the most abundant fungal genus in unfermented and fermented musts, mainly due to the contribution ofS. uvarum(42.7%) andS. cerevisiae(80%). Unfermented musts were highly variable between seasons and showed higher values of fungal diversity than fermented musts. Since microbial physiological characterization is primarily achieved in culture, we isolated nine species belonging to six genera of fungi from the unfermented must samples. All isolates were characterized for their potential capacities to be used as new starters in wine. Remarkably, onlyMetschnikowia pulcherrimacould co-exist with a commercialSaccharomyces cerevisiaestrain under fermentative conditions, representing a feasible candidate strain for wine production.
- ItemGenome sequencing and transcriptomic analysis of the Andean killifish Orestias ascotanensis reveals adaptation to high-altitude aquatic life(2022) Di Genova, Alex; Nardocci, Gino; Maldonado-Agurto, Rodrigo; Hodar, Christian; Valdivieso, Camilo; Morales, Pamela; Gajardo, Felipe; Marina, Raquel; Gutierrez, Rodrigo A.; Orellana, Ariel; Cambiazo, Veronica; Gonzalez, Mauricio; Glavic, Alvaro; Mendez, Marco A.; Maass, Alejandro; Allende, Miguel L.; Montecino, Martin A.Orestias ascotanensis (Cyprinodontidae) is a teleost pupfish endemic to springs feeding into the Ascotan saltpan in the Chilean Altiplano (3,700 m.a.s.l.) and represents an opportunity to study adaptations to high-altitude aquatic environments. We have de novo assembled the genome of O. ascotanensis at high coverage. Comparative analysis of the O. ascotanensis genome showed an overall process of contraction, including loss of genes related to Gprotein signaling, chemotaxis and signal transduction, while there was expansion of gene families associated with microtubule-based movement and protein ubiquitination. We identified 818 genes under positive selection, many of which are involved in DNA repair. Additionally, we identified novel and conserved microRNAs expressed in O. ascotanensis and its closely-related species, Orestias gloriae. Our analysis suggests that positive selection and expansion of genes that preserve genome stability are a potential adaptive mechanism to cope with the increased solar UV radiation to which high-altitude animals are exposed to.
- ItemGenome-scale metabolic models of Microbacterium species isolated from a high altitude desert environment(2020) Mandakovic, Dinka; Cintolesi, Angela; Maldonado, Jonathan; Mendoza, Sebastian N.; Aite, Meziane; Gaete, Alexis; Saitua, Francisco; Allende, Miguel; Cambiazo, Veronica; Siegel, Anne; Maass, Alejandro; Gonzalez, Mauricio; Latorre, MauricioThe Atacama Desert is the most arid desert on Earth, focus of important research activities related to microbial biodiversity studies. In this context, metabolic characterization of arid soil bacteria is crucial to understand their survival strategies under extreme environmental stress. We investigated whether strain-specific features of two Microbacterium species were involved in the metabolic ability to tolerate/adapt to local variations within an extreme desert environment. Using an integrative systems biology approach we have carried out construction and comparison of genome-scale metabolic models (GEMs) of two Microbacterium sp., CGR1 and CGR2, previously isolated from physicochemically contrasting soil sites in the Atacama Desert. Despite CGR1 and CGR2 belong to different phylogenetic clades, metabolic pathways and attributes are highly conserved in both strains. However, comparison of the GEMs showed significant differences in the connectivity of specific metabolites related to pH tolerance and CO2 production. The latter is most likely required to handle acidic stress through decarboxylation reactions. We observed greater GEM connectivity within Microbacterium sp. CGR1 compared to CGR2, which is correlated with the capacity of CGR1 to tolerate a wider pH tolerance range. Both metabolic models predict the synthesis of pigment metabolites (beta -carotene), observation validated by HPLC experiments. Our study provides a valuable resource to further investigate global metabolic adaptations of bacterial species to grow in soils with different abiotic factors within an extreme environment.
- ItemGenome-wide identification of new Wnt/β-catenin target genes in the human genome using CART method(2010) Hodar, Christian; Assar, Rodrigo; Colombres, Marcela; Aravena, Andres; Pavez, Leonardo; Gonzalez, Mauricio; Martinez, Servet; Inestrosa, Nibaldo C.; Maass, AlejandroBackground: The importance of in silico predictions for understanding cellular processes is now widely accepted, and a variety of algorithms useful for studying different biological features have been designed. In particular, the prediction of cis regulatory modules in non-coding human genome regions represents a major challenge for understanding gene regulation in several diseases. Recently, studies of the Wnt signaling pathway revealed a connection with neurodegenerative diseases such as Alzheimer's. In this article, we construct a classification tool that uses the transcription factor binding site motifs composition of some gene promoters to identify new Wnt/beta-catenin pathway target genes potentially involved in brain diseases.
- ItemGenomes of the Orestias pupfish from the Andean Altiplano shed light on their evolutionary history and phylogenetic relationships within Cyprinodontiformes(2024) Morales, Pamela; Gajardo, Felipe; Valdivieso, Camilo; Valladares, Moises A.; Di Genova, Alex; Orellana, Ariel; Gutierrez, Rodrigo A.; Gonzalez, Mauricio; Montecino, Martin; Maass, Alejandro; Mendez, Marco A.; Allende, Miguel L.Background To unravel the evolutionary history of a complex group, a comprehensive reconstruction of its phylogenetic relationships is crucial. This requires meticulous taxon sampling and careful consideration of multiple characters to ensure a complete and accurate reconstruction. The phylogenetic position of the Orestias genus has been estimated partly on unavailable or incomplete information. As a consequence, it was assigned to the family Cyprindontidae, relating this Andean fish to other geographically distant genera distributed in the Mediterranean, Middle East and North and Central America. In this study, using complete genome sequencing, we aim to clarify the phylogenetic position of Orestias within the Cyprinodontiformes order.
- ItemGenotype Prevalence of Lactose Deficiency, Vitamin D Deficiency, and the Vitamin D Receptor in a Chilean Inflammatory Bowel Disease Cohort: Insights from an Observational Study(MDPI, 2023) Pérez Jeldres, Tamara De Lourdes; Bustamante, M. Leonor; Segovia-Melero, Roberto; Aguilar, Nataly; Magne, Fabien; Ascui, Gabriel; Uribe, Denisse; Azocar, Lorena; Hernández Rocha, Cristián Antonio; Estela, Ricardo; Silva, Veronica; De La Vega, Andres; Arriagada, Elizabeth; Gonzalez, Mauricio; Onetto, Gian-Franco; Escobar, Sergio; Baez, Pablo; Zazueta, Alejandra; Pávez Ovalle Carolina Denisse; Miquel Poblete, Juan Francisco; Álvarez Lobos Manuel MarceloLactose intolerance (LI) and vitamin D deficiency (VDD) have been linked to inflammatory bowel disease (IBD). We conducted an observational study in 192 Chilean IBD patients to investigate the prevalence of a specific gene variant (LCT-13910 CC genotype) associated with LI and the prevalence of VDD/Vitamin D Receptor (VDR) gene variants. Blood samples were analyzed using Illumina's Infinium Global Screening Array. The LCT-13910 CC genotype was found in 61% of IBD patients, similar to Chilean Hispanic controls and lower than Chilean Amerindian controls. The frequency of the LCT-13910-C allele in Chilean IBD patients (0.79) was comparable to the general population and higher than Europeans (0.49). Regarding VDR and VDD variants, in our study, the rs12785878-GG variant was associated with an increased risk of IBD (OR = 2.64, CI = 1.61-4.32; p-value = 0.001). Sixty-one percent of the Chilean IBD cohort have a genetic predisposition to lactose malabsorption, and a significant proportion exhibit genetic variants associated with VDD/VDR. Screening for LI and VDD is crucial in this Latin American IBD population.
- ItemPlant ecological genomics at the limits of life in the Atacama Desert(2021) Eshel, Gil; Araus, Viviana; Undurraga, Soledad; Soto, Daniela C.; Moraga, Carol; Montecinos, Alejandro; Moyano, Tomas; Maldonado, Jonathan; Diaz, Francisca P.; Varala, Kranthi; Nelson, Chase W.; Contreras-Lopez, Orlando; Pal-Gabor, Henrietta; Kraiser, Tatiana; Carrasco-Puga, Gabriela; Nilo-Poyanco, Ricardo; Zegar, Charles M.; Orellana, Ariel; Montecino, Martin; Maass, Alejandro; Allende, Miguel L.; DeSalle, Robert; Stevenson, Dennis W.; Gonzalez, Mauricio; Latorre, Claudio; Coruzzi, Gloria M.; Gutierrez, Rodrigo A.The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Leji = a transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growthpromoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codonbased methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.
- ItemTesting the stress gradient hypothesis in soil bacterial communities associated with vegetation belts in the Andean Atacama Desert(2023) Mandakovic, Dinka; Aguado-Norese, Constanza; García-Jiménez, Beatriz; Hodar, Christian; Maldonado, Jonathan E.; Gaete, Alexis; Latorre, Mauricio; Wilkinson, Mark D.; Gutiérrez Ilabaca, Rodrigo Antonio; Cavieres, Lohengrin A.; Medina, Joaquín; Cambiazo, Verónica; Gonzalez, MauricioBackground Soil microorganisms are in constant interaction with plants, and these interactions shape the composition of soil bacterial communities by modifying their environment. However, little is known about the relationship between microorganisms and native plants present in extreme environments that are not affected by human intervention. Using high-throughput sequencing in combination with random forest and co-occurrence network analyses, we compared soil bacterial communities inhabiting the rhizosphere surrounding soil (RSS) and the corresponding bulk soil (BS) of 21 native plant species organized into three vegetation belts along the altitudinal gradient (2400–4500 m a.s.l.) of the Talabre–Lejía transect (TLT) in the slopes of the Andes in the Atacama Desert. We assessed how each plant community influenced the taxa, potential functions, and ecological interactions of the soil bacterial communities in this extreme natural ecosystem. We tested the ability of the stress gradient hypothesis, which predicts that positive species interactions become increasingly important as stressful conditions increase, to explain the interactions among members of TLT soil microbial communities. Results Our comparison of RSS and BS compartments along the TLT provided evidence of plant-specific microbial community composition in the RSS and showed that bacterial communities modify their ecological interactions, in particular, their positive:negative connection ratios in the presence of plant roots at each vegetation belt. We also identified the taxa driving the transition of the BS to the RSS, which appear to be indicators of key host-microbial relationships in the rhizosphere of plants in response to different abiotic conditions. Finally, the potential functions of the bacterial communities also diverge between the BS and the RSS compartments, particularly in the extreme and harshest belts of the TLT. Conclusions In this study, we identified taxa of bacterial communities that establish species-specific relationships with native plants and showed that over a gradient of changing abiotic conditions, these relationships may also be plant community specific. These findings also reveal that the interactions among members of the soil microbial communities do not support the stress gradient hypothesis. However, through the RSS compartment, each plant community appears to moderate the abiotic stress gradient and increase the efficiency of the soil microbial community, suggesting that positive interactions may be context dependent.
- ItemTomato Cultivars With Variable Tolerances to Water Deficit Differentially Modulate the Composition and Interaction Patterns of Their Rhizosphere Microbial Communities(2021) Gaete, Alexis; Pulgar, Rodrigo; Hodar, Christian; Maldonado, Jonathan; Pavez, Leonardo; Zamorano, Denisse; Pastenes, Claudio; Gonzalez, Mauricio; Franck, Nicolas; Mandakovic, DinkaSince drought is the leading environmental factor limiting crop productivity, and plants have a significant impact in defining the assembly of plant-specific microbial communities associated with roots, we aimed to determine the effect of thoroughly selected water deficit tolerant and susceptible Solanum lycopersicum cultivars on their rhizosphere microbiome and compared their response with plant-free soil microbial communities. We identified a total of 4,248 bacterial and 276 fungal different operational taxonomic units (OTUs) in soils by massive sequencing. We observed that tomato cultivars significantly affected the alpha and beta diversity of their bacterial rhizosphere communities but not their fungal communities compared with bulk soils (BSs), showing a plant effect exclusively on the bacterial soil community. Also, an increase in alpha diversity in response to water deficit of both bacteria and fungi was observed in the susceptible rhizosphere (SRz) but not in the tolerant rhizosphere (TRz) cultivar, implying a buffering effect of the tolerant cultivar on its rhizosphere microbial communities. Even though water deficit did not affect the microbial diversity of the tolerant cultivar, the interaction network analysis revealed that the TRz microbiota displayed the smallest and least complex soil network in response to water deficit with the least number of connected components, nodes, and edges. This reduction of the TRz network also correlated with a more efficient community, reflected in increased cooperation within kingdoms. Furthermore, we identified some specific bacteria and fungi in the TRz in response to water deficit, which, given that they belong to taxa with known beneficial characteristics for plants, could be contributing to the tolerant phenotype, highlighting the metabolic bidirectionality of the holobiont system. Future assays involving characterization of root exudates and exchange of rhizospheres between drought-tolerant and susceptible cultivars could determine the effect of specific metabolites on the microbiome community and may elucidate their functional contribution to the tolerance of plants to water deficit.