Browsing by Author "Hamilton, J-Ch"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemQUBIC Experiment Toward the First Light(2022) D'Alessandro, G.; Battistelli, E. S.; de Bernardis, P.; De Petris, M.; Gamboa Lerena, M. M.; Grandsire, L.; Hamilton, J-Ch; Marnieros, S.; Masi, S.; Mennella, A.; Mousset, L.; O'Sullivan, C.; Piat, M.; Tartari, A.; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Ade, P.; Alberro, J. G.; Almela, A.; Amico, G.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J-Ph; Bersanelli, M.; Bigot-Sazy, M-A; Bonaparte, J.; Bonis, J.; Bunn, E.; Burke, D.; Buzi, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Charlassier, R.; Cobos Cerutti, A. C.; Columbro, F.; Coppolecchia, A.; De Gasperis, G.; De Leo, M.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Ganga, K. M.; Garcia, B.; Garcia Redondo, M. E.; Gaspard, M.; Gayer, D.; Gervasi, M.; Giard, M.; Gilles, V; Giraud-Heraud, Y.; Gomez Berisso, M.; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Lamagna, L.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; Mattei, A.; May, A.; McCulloch, M.; Mele, L.; Melo, D.; Montier, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Nati, F.; Olivieri, E.; Oriol, C.; Paiella, A.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perciballi, M.; Pezzotta, F.; Piacentini, F.; Piccirillo, L.; Pisano, G.; Platino, M.; Polenta, G.; Prele, D.; Presta, G.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Schillaci, A.; Scoccola, C. G.; Scully, S.; Spinelli, S.; Stankowiak, G.; Stolpovskiy, M.; Supanitsky, A. D.; Thermeau, J-P; Timbie, P.; Tomasi, M.; Tucker, G.; Tucker, C.; Vigano, D.; Vittorio, N.; Wicek, F.; Wright, M.; Zullo, A.The Q & U Bolometric Interferometer for Cosmology (QUBIC) is a cosmology experiment that aims to measure the B-mode polarization of the cosmic microwave background (CMB). Measurements of the primordial B-mode pattern of the CMB polarization are in fact among the most exciting goals in cosmology as it would allow testing of the inflationary paradigm. Many experiments are attempting to measure the B-modes, from the ground and the stratosphere, using imaging Stokes polarimeters. The QUBIC collaboration developed an innovative concept to measure CMB polarization using bolometric interferometry. This approach mixes the high sensitivity of bolometric detectors with the accurate control of systematics due to the interferometric layout of the instrument. We present the calibration results for the Technological Demonstrator, before its commissioning in the Argentinian observing site and preparation for first light.
- ItemQUBIC IV: Performance of TES bolometers and readout electronics(2022) Piat, M.; Stankowiak, G.; Battistelli, E. S.; de Bernardis, P.; D'Alessandro, G.; De Petris, M.; Grandsire, L.; Hamilton, J-Ch; Hoang, T. D.; Marnieros, S.; Masi, S.; Mennella, A.; Mousset, L.; O'Sullivan, C.; Prele, D.; Tartari, A.; Thermeau, J-P; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Ade, P.; Alberro, J. G.; Almela, A.; Amico, G.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J-Ph; Bersanelli, M.; Bigot-Sazy, M-A; Bonaparte, J.; Bonis, J.; Bunn, E.; Burke, D.; Buzi, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Charlassier, R.; Cobos Cerutti, A. C.; Columbro, F.; Coppolecchia, A.; De Gasperis, G.; De Leo, M.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Gamboa Lerena, M. M.; Ganga, K. M.; Garcia, B.; Garcia Redondo, M. E.; Gaspard, M.; Gayer, D.; Gervasi, M.; Giard, M.; Gilles, V; Giraud-Heraud, Y.; Gomez Berisso, M.; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Lamagna, L.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; Mattei, A.; May, A.; McCulloch, M.; Mele, L.; Melo, D.; Montier, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Nati, F.; Olivieri, E.; Oriol, C.; Paiella, A.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perciballi, M.; Pezzotta, F.; Piacentini, F.; Piccirillo, L.; Pisano, G.; Platino, M.; Polenta, G.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Schillaci, A.; Scoccola, C. G.; Scully, S.; Spinelli, S.; Stolpovskiy, M.; Supanitsky, A. D.; Timbie, P.; Tomasi, M.; Tucker, C.; Tucker, G.; Vigano, D.; Vittorio, N.; Wicek, F.; Wright, M.; Zullo, A.A prototype version of the Q & U bolometric interferometer for cosmology (QUBIC) underwent a campaign of testing in the laboratory at Astroparticle Physics and Cosmology laboratory in Paris (APC). The detection chain is currently made of 256 NbSi transition edge sensors (TES) cooled to 320 mK. The readout system is a 128:1 time domain multiplexing scheme based on 128 SQUIDs cooled at 1K that are controlled and amplified by a SiGe application specific integrated circuit at 40 K. We report the performance of this readout chain and the characterization of the TES. The readout system has been functionally tested and characterized in the lab and in QUBIC. The low noise amplifier demonstrated a white noise level of 0.3 nV/root Hz. Characterizations of the QUBIC detectors and readout electronics includes the measurement of I-V curves, time constant and the noise equivalent power. The QUBIC TES bolometer array has approximately 80% detectors within operational parameters. It demonstrated a thermal decoupling compatible with a phonon noise of about 5 x 10(-1)7 W/root Hz at 410 mK critical temperature. While still limited by microphonics from the pulse tubes and noise aliasing from readout system, the instrument noise equivalent power is about 2 x 10(-16) W/root Hz, enough for the demonstration of bolometric interferometry.
- ItemQUBIC V: Cryogenic system design and performance(2022) Masi, S.; de Bernardis, P.; Chapron, C.; Columbro, F.; Coppolecchia, A.; D'Alessandro, G.; Battistelli, E. S.; De Petris, M.; Grandsire, L.; Hamilton, J-Ch; Lamagna, L.; Marnieros, S.; May, A.; Mele, L.; Mennella, A.; O'Sullivan, C.; Paiella, A.; Piacentini, F.; Piat, M.; Piccirillo, L.; Presta, G.; Schillaci, A.; Tartari, A.; Thermeau, J-P; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Ade, P.; Alberro, J. G.; Almela, A.; Amico, G.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J-Ph; Bersanelli, M.; Bigot-Sazy, M-A; Bonaparte, J.; Bonis, J.; Bunn, E.; Burke, D.; Buzi, D.; Cavaliere, F.; Chanial, P.; Charlassier, R.; Cobos Cerutti, A. C.; De Gasperis, G.; De Leo, M.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Gamboa Lerena, M. M.; Ganga, K. M.; Garcia, B.; Garcia Redondo, M. E.; Gaspard, M.; Gayer, D.; Gervasi, M.; Giard, M.; Gilles, V; Giraud-Heraud, Y.; Gomez Berisso, M.; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; Mattei, A.; McCulloch, M.; Melo, D.; Montier, L.; Mousset, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Nati, F.; Olivieri, E.; Oriol, C.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perciballi, M.; Pezzotta, F.; Pisano, G.; Platino, M.; Polenta, G.; Prele, D.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Scoccola, C. G.; Scully, S.; Spinelli, S.; Stankowiak, G.; Stolpovskiy, M.; Supanitsky, A. D.; Timbie, P.; Tomasi, M.; Tucker, C.; Tucker, G.; Vigano, D.; Vittorio, N.; Wicek, F.; Wright, M.; Zullo, A.Current experiments aimed at measuring the polarization of the Cosmic Microwave Background (CMB) use cryogenic detector arrays with cold optical systems to boost their mapping speed. For this reason, large volume cryogenic systems with large optical windows, working continuously for years, are needed. The cryogenic system of the QUBIC (Q & U Bolometric Interferometer for Cosmology) experiment solves a combination of simultaneous requirements: very large optical throughput (similar to 40 cm(2)sr), large volume (similar to 4 m(3)) and large mass (similar to 165 kg) of the cryogenic instrument. Here we describe its design, fabrication, experimental optimization and validation in the Technological Demonstrator configuration. The QUBIC cryogenic system is based on a large volume cryostat that uses two pulse-tube refrigerators to cool the instrument to similar to 3K. The instrument includes the cryogenic polarization modulator, the corrugated feedhorn array, and the lower temperature stages: a He-4 evaporator cooling the interferometer beam combiner to -1K and a He-3 evaporator cooling the focal-plane detector arrays to similar to 0.3K. The cryogenic system has been tested and validated for more than 6 months of continuous operation. The detector arrays have reached a stable operating temperature of 0.33 K, while the polarization modulator has operated at a similar to 10K base temperature. The system has been tilted to cover the boresight elevation range 20 degrees-90 degrees without significant temperature variations. The instrument is now ready for deployment to the high Argentinean Andes.
- ItemQUBIC VI: Cryogenic half wave plate rotator, design and performance(2022) D'Alessandro, G.; Mele, L.; Columbro, F.; Amico, G.; Battistelli, E. S.; de Bernardis, P.; Coppolecchia, A.; De Petris, M.; Grandsire, L.; Hamilton, J-Ch; Lamagna, L.; Marnieros, S.; Masi, S.; Mennella, A.; O'Sullivan, C.; Paiella, A.; Piacentini, F.; Piat, M.; Pisano, G.; Presta, G.; Tartari, A.; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Ade, P.; Alberro, J. G.; Almela, A.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J-Ph; Bersanelli, M.; Bigot-Sazy, M-A; Bonaparte, J.; Bonis, J.; Bunn, E.; Burke, D.; Buzi, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Charlassier, R.; Cobos Cerutti, A. C.; De Gasperis, G.; De Leo, M.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Gamboa Lerena, M. M.; Ganga, K. M.; Garcia, B.; Garcia Redondo, M. E.; Gaspard, M.; Gayer, D.; Gervasi, M.; Giard, M.; Gilles, V; Giraud-Heraud, Y.; Gomez Berisso, M.; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; Mattei, A.; May, A.; McCulloch, M.; Melo, D.; Montier, L.; Mousset, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Nati, F.; Olivieri, E.; Oriol, C.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perciballi, M.; Pezzotta, F.; Piccirillo, L.; Platino, M.; Polenta, G.; Prele, D.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Schillaci, A.; Scoccola, C. G.; Scully, S.; Spinelli, S.; Stankowiak, G.; Stolpovskiy, M.; Supanitsky, A. D.; Thermeau, J-P; Timbie, P.; Tomasi, M.; Tucker, C.; Tucker, G.; Vigano, D.; Vittorio, N.; Wicek, F.; Wright, M.; Zullo, A.Setting an upper limit or detection of B-mode polarization imprinted by gravitational waves from Inflation is one goal of modern large angular scale cosmic microwave background (CMB) experiments around the world. A great effort is being made in the deployment of many ground-based, balloon-borne and satellite experiments, using different methods to separate this faint polarized component from the incoming radiation. QUBIC exploits one of the most widely-used techniques to extract the input Stokes parameters, consisting in a rotating half-wave plate (HWP) and a linear polarizer to separate and modulate polarization components. QUBIC uses a step-by-step rotating HWP, with 15 degrees steps, combined with a 0.4 degrees s(-1) azimuth sky scan speed. The rotation is driven by a stepper motor mounted on the cryostat outer shell to avoid heat load at internal cryogenic stages. The design of this optical element is an engineering challenge due to its large 370 mm diameter and the 8K operation temperature that are unique features of the QUBIC experiment. We present the design for a modulator mechanism for up to 370 mm, and the first optical tests by using the prototype of QUBIC HWP (180 mm diameter). The tests and results presented in this work show that the QUBIC HWP rotator can achieve a precision of 0.15 degrees in position by using the stepper motor and custom-made optical encoder. The rotation induces < 5.0 mW (95% C.L) of power load on the 4K stage, resulting in no thermal issues on this stage during measurements. We measure a temperature settle-down characteristic time of 28 s after a rotation through a 15 degrees step, compatible with the scanning strategy, and we estimate a maximum temperature gradient within the HWP of <= 10 mK. This was calculated by setting up finite element thermal simulations that include the temperature profiles measured during the rotator operations. We report polarization modulation measurements performed at 150 GHz, showing a polarization efficiency > 99% (68% C.L.) and a median cross-polarization chi(Pol) of 0.12%, with 71% of detectors showinga chi(Pol )+ 2 sigma upper limit < 1%, measured using selected detectors that had the best signal-to-noise ratio.
- ItemQUBIC VII: The feedhorn-switch system of the technological demonstrator(2022) Cavaliere, F.; Mennella, A.; Zannoni, M.; Battaglia, P.; Battistelli, E. S.; de Bernardis, P.; Burke, D.; D'Alessandro, G.; De Petris, M.; Franceschet, C.; Grandsire, L.; Hamilton, J-Ch; Maffei, B.; Manzan, E.; Marnieros, S.; Masi, S.; O'Sullivan, C.; Passerini, A.; Pezzotta, F.; Piat, M.; Tartari, A.; Torchinsky, S. A.; Vigano, D.; Voisin, F.; Ade, P.; Alberro, J. G.; Almela, A.; Amico, G.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J-Ph; Bersanelli, M.; Bigot-Sazy, M-A; Bonaparte, J.; Bonis, J.; Bunn, E.; Buzi, D.; Chanial, P.; Chapron, C.; Charlassier, R.; Cobos Cerutti, A. C.; Columbro, F.; Coppolecchia, A.; De Gasperis, G.; De Leo, M.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Gamboa Lerena, M. M.; Ganga, K. M.; Garcia, B.; Garcia Redondo, M. E.; Gaspard, M.; Gayer, D.; Gervasi, M.; Giard, M.; Gilles, V; Giraud-Heraud, Y.; Gomez Berisso, M.; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Lamagna, L.; Loucatos, S.; Louis, T.; Marty, W.; Mattei, A.; May, A.; McCulloch, M.; Mele, L.; Melo, D.; Montier, L.; Mousset, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Nati, F.; Olivieri, E.; Oriol, C.; Paiella, A.; Pajot, F.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perciballi, M.; Piacentini, F.; Piccirillo, L.; Pisano, G.; Platino, M.; Polenta, G.; Prele, D.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Schillaci, A.; Scoccola, C. G.; Scully, S.; Spinelli, S.; Stankowiak, G.; Stolpovskiy, M.; Supanitsky, A. D.; Thermeau, J-P; Timbie, P.; Tomasi, M.; Tucker, C.; Tucker, G.; Vittorio, N.; Wicek, F.; Wright, M.; Zullo, A.We present the design, manufacturing and performance of the horn-switch system developed for the technological demonstrator of QUBIC (the Q&U Bolometric Interferometer for Cosmology). This system consists of 64 back-to-back dual-band (150 GHz and 220 GHz) corrugated feed-horns interposed with mechanical switches used to select desired baselines during the instrument self-calibration. We manufactured the horns in aluminum platelets milled by photo-chemical etching and mechanically tightened with screws. The switches are based on steel blades that open and close the waveguide between the back-to-back horns and are operated by miniaturized electromagnets. The measured electromagnetic performance of the feedhorns agrees with simulations. In particular we obtained a return loss around - 20 dB up to 230 GHz and beam patterns in agreement with single-mode simulations down to - 30 dB. The switches for this prototype were designed and built for the 150 GHz band. In this frequency range we find return and insertion losses consistent with expectations (< -25dB and similar to -0.1dB, respectively) and an isolation larger than 70dB. In this paper we also show the current development status of the feedhorn-switch system for the QUBIC full instrument, based on an array of 400 horn-switch assemblies.
- ItemQUBIC VIII: Optical design and performance(2022) O'Sullivan, C.; De Petris, M.; Amico, G.; Battistelli, E. S.; de Bernardis, P.; Burke, D.; Buzi, D.; Chapron, C.; Conversi, L.; D'Alessandro, G.; De Leo, M.; Gayer, D.; Grandsire, L.; Hamilton, J-Ch; Marnieros, S.; Masi, S.; Mattei, A.; Mennella, A.; Mousset, L.; Murphy, J. D.; Pelosi, A.; Perciballi, M.; Piat, M.; Scully, S.; Tartari, A.; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Zullo, A.; Ade, P.; Alberro, J. G.; Almela, A.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J-Ph; Bersanelli, M.; Bigot-Sazy, M-A; Bonaparte, J.; Bonis, J.; Bunn, E.; Cavaliere, F.; Chanial, P.; Charlassier, R.; Cobos Cerutti, A. C.; Columbro, F.; Coppolecchia, A.; De Gasperis, G.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Gamboa Lerena, M. M.; Ganga, K. M.; Garcia, B.; Garcia Redondo, M. E.; Gaspard, M.; Gervasi, M.; Giard, M.; Gilles, V; Giraud-Heraud, Y.; Gomez Berisso, M.; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Lamagna, L.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; May, A.; McCulloch, M.; Mele, L.; Melo, D.; Montier, L.; Mundo, L. M.; Murphy, J. A.; Nati, F.; Olivieri, E.; Oriol, C.; Paiella, A.; Pajot, F.; Passerini, A.; Pastoriza, H.; Perbost, C.; Pezzotta, F.; Piacentini, F.; Piccirillo, L.; Pisano, G.; Platino, M.; Polenta, G.; Prele, D.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Schillaci, A.; Scoccola, C. G.; Spinelli, S.; Stankowiak, G.; Stolpovskiy, M.; Supanitsky, A. D.; Thermeau, J-P; Timbie, P.; Tomasi, M.; Tucker, C.; Tucker, G.; Vigano, D.; Vittorio, N.; Wicek, F.; Wright, M.The Q and U Bolometric Interferometer for Cosmology (QUBIC) is a ground-based experiment that aims to detect B-mode polarization anisotropies [1] in the CMB at angular scales around the l similar or equal to 100 recombination peak. Systematic errors make ground-based observations of B modes at millimetre wavelengths very challenging and QUBIC mitigates these problems in a somewhat complementary way to other existing or planned experiments using the novel technique of bolometric interferometry. This technique takes advantage of the sensitivity of an imager and the systematic error control of an interferometer. A cold reflective optical combiner superimposes the re-emitted beams from 400 aperture feedhorns on two focal planes. A shielding system composed of a fixed groundshield, and a forebaffle that moves with the instrument, limits the impact of local contaminants. The modelling, design, manufacturing and preliminary measurements of the optical components are described in this paper.