Browsing by Author "Hammernik, Kerstin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA Deep Learning-Based Integrated Framework for Quality-Aware Undersampled Cine Cardiac MRI Reconstruction and Analysis(2024) Machado, Ines; Puyol-Anton, Esther; Hammernik, Kerstin; Cruz, Gastao; Ugurlu, Devran; Olakorede, Ihsane; Oksuz, Ilkay; Ruijsink, Bram; Castelo-Branco, Miguel; Young, Alistair; Prieto, Claudia; Schnabel, Julia; King, AndrewCine cardiac magnetic resonance (CMR) imaging is considered the gold standard for cardiac function evaluation. However, cine CMR acquisition is inherently slow and in recent decades considerable effort has been put into accelerating scan times without compromising image quality or the accuracy of derived results. In this article, we present a fully-automated, quality-controlled integrated framework for reconstruction, segmentation and downstream analysis of undersampled cine CMR data. The framework produces high quality reconstructions and segmentations, leading to undersampling factors that are optimised on a scan-by-scan basis. This results in reduced scan times and automated analysis, enabling robust and accurate estimation of functional biomarkers. To demonstrate the feasibility of the proposed approach, we perform simulations of radial k-space acquisitions using in-vivo cine CMR data from 270 subjects from the UK Biobank (with synthetic phase) and in-vivo cine CMR data from 16 healthy subjects (with real phase). The results demonstrate that the optimal undersampling factor varies for different subjects by approximately 1 to 2 seconds per slice. We show that our method can produce quality-controlled images in a mean scan time reduced from 12 to 4 seconds per slice, and that image quality is sufficient to allow clinically relevant parameters to be automatically estimated to lie within 5% mean absolute difference.
- ItemSelf-supervised motion-corrected image reconstruction network for 4D magnetic resonance imaging of the body trunk(Now Publishers Inc, 2022) Küstner, Thomas; Pan, Jiazhen; Gilliam, Christopher; Qi, Haikun; Cruz, Gastao; Hammernik, Kerstin; Blu, Thierry; Rueckert, Daniel; Botnar, René Michael; Prieto Vásquez, Claudia; Gatidis, SergiosRespiratory motion can cause artifacts in magnetic resonance imaging of the body trunk if patients cannot hold their breath or triggered acquisitions are not practical. Retrospective correction strategies usually cope with motion by fast imaging sequences under free-movement conditions followed by motion binning based on motion traces. These acquisitions yield sub-Nyquist sampled and motion-resolved k-space data. Motion states are linked to each other by non-rigid deformation fields. Usually, motion registration is formulated in image space which can however be impaired by aliasing artifacts or by estimation from low-resolution images. Subsequently, any motion-corrected reconstruction can be biased by errors in the deformation fields. In this work, we propose a deep-learning based motion-corrected 4D (3D spatial + time) image reconstruction which combines a non-rigid registration network and a 4D reconstruction network. Non-rigid motion is estimated in k-space and incorporated into the reconstruction network. The proposed method is evaluated on in-vivo 4D motion-resolved magnetic resonance images of patients with suspected liver or lung metastases and healthy subjects. The proposed approach provides 4D motion-corrected images and deformation fields. It enables a ∼ 14× accelerated acquisition with a 25- fold faster reconstruction than comparable approaches under consistent preservation of image quality for changing patients and motion patterns.