Browsing by Author "Hasselquist, S."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemA Chemical and Kinematical Analysis of the Intermediate-age Open Cluster IC 166 from APOGEE and Gaia DR2(2018) Schiappacasse-Ulloa, J.; Tang, B.; Fernandez-Trincado, J. G.; Zamora, O.; Geisler, D.; Frinchaboy, P.; Schultheis, M.; Dell'Agli, F.; Villanova, S.; Masseron, T.; Meszaros, Sz; Souto, D.; Hasselquist, S.; Cunha, K.; Smith, V. V.; Garcia-Hernandez, D. A.; Vieira, K.; Robin, A. C.; Minniti, D.; Zasowski, G.; Moreno, E.; Perez-Villegas, A.; Lane, R. R.; Ivans, I. I.; Pan, K.; Nitschelm, C.; Santana, F. A.; Carrera, R.; Roman-Lopes, A.
- ItemAPOGEE DR14/DR15 abundances in the Inner Milky Way(2019) Zasowski, G.; Schultheis, M.; Hasselquist, S.; Cunha, K.; Sobeck, J.; Johnson, J.A.; Rojas Arriagada, Alvaro; Majewski, S.R.; Andrew, B.H.; Minniti, D.
- ItemAtypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns(2017) Fernández Trincado J.; Zamora, O.; García Hernández, D.; Souto, D.; Dell'Agli, F.; Schiavon, R.; Geisler, D.; Tang, B.; Villanova, S.; Chanamé, Julio; Hasselquist, S.; Mennickent, R.; Cunha, K.; Shetrone, M.; Prieto, C.; Vieira, K.; Zasowski, G.; Sobeck, J.; Hayes, C.; Majewski, S.; Placco, V.; Beers, T.; Schleicher, D.; Robin, A.; Mészáros, S.; Masseron, T.; Pérez, A.; Anders, F.; Meza, A.; Alves-Brito A.; Carrera, R.; Minniti, D.; Lane, R.; Fernández-Alvar E.; Moreno, E.; Pichardo, B.; Pérez-Villegas, A.; Schultheis, M.; Roman-Lopes, A.; Fuentes, C.; Nitschelm, C.; Harding, P.; Bizyaev, D.; Pan, K.; Oravetz, D.; Simmons, A.; Ivans, I.; Blanco-Cuaresma, S.; Hernández J.; Alonso-García, J.; Valenzuela, O.
- ItemCool stars in the Galactic center as seen by APOGEE : M giants, AGB stars, and supergiant stars and candidates(2020) Schultheis, M.; Rojas Arriagada, Alvaro; Cunha, K.; Zoccali, Manuela; Chiappini, C.; Zasowski, G.; Queiroz, A. B. A.; Minniti, D.; Fritz, T.; Garcia Hernandez, D. A.; Nitschelm, C.; Zamora, O.; Hasselquist, S.; Fernandez Trincado, J. G.; Munoz, R. .R
- ItemH-band discovery of additional second-generation stars in the Galactic bulge globular cluster NGC 6522 as observed by APOGEE and Gaia(2019) Fernandez-Trincado, J. G.; Zamora, O.; Souto, Diogo; Cohen, R. E.; Agli, F. Dell; Garcia-Hernandez, D. A.; Masseron, T.; Schiavon, R. P.; Meszaros, Sz; Cunha, K.; Hasselquist, S.; Shetrone, M.; Schiappacasse Ulloa, J.; Tang, B.; Geisler, D.; Schleicher, D. R. G.; Villanova, S.; Mennickent, R. E.; Minniti, D.; Alonso-Garcia, J.; Manchado, A.; Beers, T. C.; Sobeck, J.; Zasowski, G.; Schultheis, M.; Majewski, S. R.; Rojas-Arriagada, A.; Almeida, A.; Santana, F.; Oelkers, R. J.; Longa-Pena, P.; Carrera, R.; Burgasser, A. J.; Lane, R. R.; Roman-Lopes, A.; Ivans, I. I.; Hearty, F. R.We present an elemental abundance analysis of high-resolution spectra for five giant stars spatially located within the innermost regions of the bulge globular cluster NGC 6522 and derive Fe, Mg, Al, C, N, O, Si, and Ce abundances based on H-band spectra taken with the multi-object APOGEE-north spectrograph from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Of the five cluster candidates, two previously unremarked stars are confirmed to have second-generation (SG) abundance patterns, with the basic pattern of depletion in C and Mg simultaneous with enrichment in N and Al as seen in other SG globular cluster populations at similar metallicity. In agreement with the most recent optical studies, the NGC 6522 stars analyzed exhibit (when available) only mild overabundances of the s-process element Ce, contradicting the idea that NGC 6522 stars are formed from gas enriched by spinstars and indicating that other stellar sources such as massive AGB stars could be the primary polluters of intra-cluster medium. The peculiar abundance signatures of SG stars have been observed in our data, confirming the presence of multiple generations of stars in NGC 6522.
- ItemThe chemical compositions of accreted and in situ galactic globular clusters according to SDSS/APOGEE(2020) Horta, D.; Schiavon, R. P.; Mackereth, J. T.; Beers, T. C.; Fernández-Trincado, J. G.; Frinchaboy, P. M.; García-Hernández, D. A.; Geisler, D.; Hasselquist, S.; Jönsson, H.; Lane Richard Reade; Majewski, S. R.; Mészáros, S.; Bidin, C. M.; Nataf, D. M.; Roman-Lopes, A.; Nitschelm, C.; Vargas-González, J.; Zasowsk, G.Studies of the kinematics and chemical compositions of Galactic globular clusters (GCs) enable the reconstruction of the history of star formation, chemical evolution, and mass assembly of the Galaxy. Using the latest data release (DR16) of the SDSS/APOGEE survey, we identify 3090 stars associated with 46 GCs. Using a previously defined kinematic association, we break the sample down into eight separate groups and examine how the kinematics-based classification maps into chemical composition space, considering only α (mostly Si and Mg) elements and Fe. Our results show that (i) the loci of both in situ and accreted subgroups in chemical space match those of their field counterparts; (ii) GCs from different individual accreted subgroups occupy the same locus in chemical space. This could either mean that they share a similar origin or that they are associated with distinct satellites which underwent similar chemical enrichment histories; (iii) the chemical compositions of the GCs associated with the low orbital energy subgroup defined by Massari and collaborators is broadly consistent with an in situ origin. However, at the low-metallicity end, the distinction between accreted and in situ populations is blurred; (iv) regarding the status of GCs whose origin is ambiguous, we conclude the following: the position in Si–Fe plane suggests an in situ origin for Liller 1 and a likely accreted origin for NGC 5904 and NGC 6388. The case of NGC 288 is unclear, as its orbital properties suggest an accretion origin, its chemical composition suggests it may have formed in situ.
- ItemThe Milky Way bar and bulge revealed by APOGEE and Gaia EDR3(2021) Queiroz, A. B. A.; Chiappini, C.; Perez-Villegas, A.; Khalatyan, A.; Anders, F.; Barbuy, B.; Santiago, B. X.; Steinmetz, M.; Cunha, K.; Schultheis, M.; Majewski, S. R.; Minchev, I; Minniti, D.; Beaton, R. L.; Cohen, R. E.; da Costa, L. N.; Fernandez-Trincado, J. G.; Garcia-Hernandez, D. A.; Geisler, D.; Hasselquist, S.; Lane, R. R.; Nitschelm, C.; Rojas-Arriagada, A.; Roman-Lopes, A.; Smith, V; Zasowski, G.We investigate the inner regions of the Milky Way using data from APOGEE and Gaia EDR3. Our inner Galactic sample has more than 26 500 stars within |X-Gal|< 5 kpc, |Y-Gal|< 3.5 kpc, |Z(Gal)|< 1 kpc, and we also carry out the analysis for a foreground-cleaned subsample of 8000 stars that is more representative of the bulge-bar populations. These samples allow us to build chemo-dynamical maps of the stellar populations with vastly improved detail. The inner Galaxy shows an apparent chemical bimodality in key abundance ratios [alpha/Fe], [C/N], and [Mn/O], which probe different enrichment timescales, suggesting a star formation gap (quenching) between the high- and low-alpha populations. Using a joint analysis of the distributions of kinematics, metallicities, mean orbital radius, and chemical abundances, we can characterize the different populations coexisting in the innermost regions of the Galaxy for the first time. The chemo-kinematic data dissected on an eccentricity-|Z|(max) plane reveal the chemical and kinematic signatures of the bar, the thin inner disc, and an inner thick disc, and a broad metallicity population with large velocity dispersion indicative of a pressure-supported component. The interplay between these different populations is mapped onto the different metallicity distributions seen in the eccentricity-|Z|(max) diagram consistently with the mean orbital radius and V-phi distributions. A clear metallicity gradient as a function of |Z|(max) is also found, which is consistent with the spatial overlapping of different populations. Additionally, we find and chemically and kinematically characterize a group of counter-rotating stars that could be the result of a gas-rich merger event or just the result of clumpy star formation during the earliest phases of the early disc that migrated into the bulge. Finally, based on 6D information, we assign stars a probability value of being on a bar orbit and find that most of the stars with large bar orbit probabilities come from the innermost 3 kpc, with a broad dispersion of metallicity. Even stars with a high probability of belonging to the bar show chemical bimodality in the [alpha/Fe] versus [Fe/H] diagram. This suggests bar trapping to be an efficient mechanism, explaining why stars on bar orbits do not show a significant, distinct chemical abundance ratio signature.