Browsing by Author "Henningsson, Markus."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCMRA with 100% navigator efficiency with 3D self navigation and interleaved scanning(2014) Prieto Vásquez, Claudia; Powell, Jonathan.; Henningsson, Markus.; Koken, Peter.; Botnar, René Michael
- ItemDiagnostic performance of image navigated coronary CMR angiography in patients with coronary artery disease(2017) Botnar, René Michael; Henningsson, Markus.; Shome, Joy.; Bratis, Konstantinos.; Vieira, Miguel Silva.; Nagel, Eike.Abstract Background The use of coronary MR angiography (CMRA) in patients with coronary artery disease (CAD) remains limited due to the long scan times, unpredictable and often non-diagnostic image quality secondary to respiratory motion artifacts. The purpose of this study was to evaluate CMRA with image-based respiratory navigation (iNAV CMRA) and compare it to gold standard invasive x-ray coronary angiography in patients with CAD. Methods Consecutive patients referred for CMR assessment were included to undergo iNAV CMRA on a 1.5 T scanner. Coronary vessel sharpness and a visual score were assigned to the coronary arteries. A diagnostic reading was performed on the iNAV CMRA data, where a lumen narrowing >50% was considered diseased. This was compared to invasive x-ray findings. Results Image-navigated CMRA was performed in 31 patients (77% male, 56 ± 14 years). The iNAV CMRA scan time was 7 min:21 s ± 0 min:28 s. Out of a possible 279 coronary segments, 26 segments were excluded from analysis due to stents or diameter less than 1.5 mm, resulting in a total of 253 coronary segments. Diagnostic image quality was obtained for 98% of proximal coronary segments, 94% of middle segments, and 91% of distal coronary segments. The sensitivity and specificity was 86% and 83% per patient, 80% and 92% per vessel and 73% and 95% per segment. Conclusion In this study, iNAV CMRA offered a very good diagnostic performance when compared against invasive x-ray angiography. Due to the short and predictable scan time it can add clinical value as a part of a comprehensive CAD assessment protocol.
- ItemDual-phase whole-heart imaging using image navigation in congenital heart disease(2018) Botnar, René Michael; Moyé, Danielle M.; Hussain, Tarique.; Tandon, Animesh.; Greil, Gerald F.; Dyer, Adrian K.; Henningsson, Markus.Abstract Background Dual-phase 3-dimensional whole-heart acquisition allows simultaneous imaging during systole and diastole. Respiratory navigator gating and tracking of the diaphragm is used with limited accuracy. Prolonged scan time is common, and navigation often fails in patients with erratic breathing. Image-navigation (iNAV) tracks movement of the heart itself and is feasible in single phase whole heart imaging. To evaluate its diagnostic ability in congenital heart disease, we sought to apply iNAV to dual-phase sequencing. Methods Healthy volunteers and patients with congenital heart disease underwent dual-phase imaging using the conventional diaphragmatic-navigation (dNAV) and iNAV. Acquisition time was recorded and image quality assessed. Sharpness and length of the right coronary (RCA), left anterior descending (LAD), and circumflex (LCx) arteries were measured in both cardiac phases for both approaches. Qualitative and quantitative analyses were performed in a blinded and randomized fashion. Results In volunteers, there was no significant difference in vessel sharpness between approaches (p > 0.05). In patients, analysis showed equal vessel sharpness for LAD and RCA (p > 0.05). LCx sharpness was greater with dNAV (p < 0.05). Visualized length with iNAV was 0.5 ± 0.4 cm greater than that with dNAV for LCx in diastole (p < 0.05), 1.0 ± 0.3 cm greater than dNAV for LAD in diastole (p < 0.05), and 0.8 ± 0.7 cm greater than dNAV for RCA in systole (p < 0.05). Qualitative scores were similar between modalities (p = 0.71). Mean iNAV scan time was 5:18 ± 2:12 min shorter than mean dNAV scan time in volunteers (p = 0.0001) and 3:16 ± 1:12 min shorter in patients (p = 0.0001). Conclusions Image quality of iNAV and dNAV was similar with better distal vessel visualization with iNAV. iNAV acquisition time was significantly shorter. Complete cardiac diagnosis was achieved. Shortened acquisition time will improve clinical applicability and patient comfort.