Browsing by Author "Hilton, Matt"
Now showing 1 - 20 of 32
Results Per Page
Sort Options
- ItemA high-resolution view of the filament of gas between Abell 399 and Abell 401 from the Atacama Cosmology Telescope and MUSTANG-2(2022) Hincks, Adam D.; Radiconi, Federico; Romero, Charles; Madhavacheril, Mathew S.; Mroczkowski, Tony; Austermann, Jason E.; Barbavara, Eleonora; Battaglia, Nicholas; Battistelli, Elia; Bond, J. Richard; Calabrese, Erminia; de Bernardis, Paolo; Devlin, Mark J.; Dicker, Simon R.; Duff, Shannon M.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Dunner, Rolando; Gallardo, Patricio A.; Govoni, Federica; Hill, J. Colin; Hilton, Matt; Hubmayr, Johannes; Hughes, John P.; Lamagna, Luca; Lokken, Martine; Masi, Silvia; Mason, Brian S.; McMahon, Jeff; Moodley, Kavilan; Murgia, Matteo; Naess, Sigurd; Page, Lyman; Piacentini, Francesco; Salatino, Maria; Sarazin, Craig L.; Schillaci, Alessandro; Sievers, Jonathan L.; Sifon, Cristobal; Staggs, Suzanne; Ullom, Joel N.; Vacca, Valentina; Van Engelen, Alexander; Vissers, Michael R.; Wollack, Edward J.; Xu, ZhileiWe report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the 1.65 arcmin resolution that allows us to clearly separate the profiles of the clusters, whose centres are separated by 37 arcmin, from the gas associated with the filament. A model that fits for only the two clusters is ruled out compared to one that includes a bridge component at > 5 sigma. Using a gas temperature determined from Suzaku X-ray data, we infer a total mass of (3.3 +/- 0.7) x 10(14) M-circle dot associated with the filament, comprising about 8 per cent of the entire Abell 399-Abell 401 system. We fit two phenomenological models to the filamentary structure; the favoured model has a width transverse to the axis joining the clusters of similar to 1.9 Mpc. When combined with the Suzaku data, we find a gas density of (0.88 +/- 0.24) x 10(-4) cm(-3), considerably lower than previously reported. We show that this can be fully explained by a geometry in which the axis joining Abell 399 and Abell 401 has a large component along the line of sight, such that the distance between the clusters is significantly greater than the 3.2 Mpc projected separation on the plane of the sky. Finally, we present initial results from higher resolution (12.7 arcsec effective) imaging of the bridge with the MUSTANG-2 receiver on the Green Bank Telescope.
- ItemA Multiwavelength Approach to Constraining the Merger Properties of ACT-CL J0034.4+0225(2024) Doze, Peter; Hilton, Matt; Hughes, John P.; Keeton, Charles R.; Knowles, Kenda; Moodley, Kavilan; Mroczkowski, Tony; Partridge, Bruce; Raney, Catie A.; Sifon, Cristobal; Sikhosana, Sinenhlanhla; Vargas, Cristian; Wollack, Edward J.ACT-CL J0034.4+0225 is a previously unrecognized merging galaxy cluster at z = 0.38588 +/- 0.00068. Our primary evidence is provided by a 21 ks Chandra image that shows two surface brightness peaks separated by similar to 49 '' (259 kpc) surrounded by an extended cluster gas distribution. Each gas peak contains a brightest cluster galaxy, offset from the gas peak. We collect new South African Large Telescope optical spectra that, when augmented by archival data, yield redshifts for the two BGCs and 58 other cluster members. Archival Giant Metrewave Radio Telescope and MeerKAT data reveal a radio halo that encompasses the X-ray peaks. We provide and compare three X-ray-based mass estimates (5.0 x 1014 M circle dot, 6.4 x 1014 M circle dot, and 8.6 x 1014 M circle dot). The Planck and ACT Sunyaev-Zel'dovich masses are approximate to 5.8 x 1014 M circle dot. We constrain the merger state and properties by comparing them to an existing suite of N-body/hydrodynamical models using the measured gas peak separation (259 kpc, projected) and radial velocity difference (0-1000 km s-1). This constrains the epoch of the merger to be within similar to 100 Myr of first pericenter passage. A strong lensing analysis constrains the mass ratio to be in the range 1:1-1:20, while the cluster morphology prefers values near the equal-mass range.
- ItemACT-DR5 Sunyaev-Zel'dovich clusters: Weak lensing mass calibration with KiDS(2024) Robertson, Naomi Clare; Sifon, Cristobal; Asgari, Marika; Battaglia, Nicholas; Bilicki, Maciej; Richard Bond, John; Devlin, Mark J.; Dunkley, Jo; Giblin, Benjamin; Heymans, Catherine; Hildebrandt, Hendrik; Hilton, Matt; Hoekstra, Henk; Hughes, John P.; Kuijken, Konrad; Louis, Thibaut; Mallaby-Kay, Maya; Page, Lyman; Partridge, Bruce; Radovich, Mario; Schneider, Peter; Shan, Huanyuan; Spergel, David N.; Troster, Tilman; Wollack, Edward J.; Vargas, Cristian; Wright, Angus H.We present Weak Gravitational Lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a > 5 sigma thermal Sunyaev-Zel'dovich (SZ) signal by the Atacama Cosmology Telescope (ACT). Using a halo-model approach, we constrained the average total cluster mass, M-WL, accounting for the ACT cluster selection function of the full sample. We find that the SZ cluster mass estimate M-SZ, which was calibrated using X-ray observations, is biased with M-SZ/M-WL = (1 - b(SZ)) = 0.65 +/- 0.05. Separating the sample into six mass bins, we find no evidence of a strong mass dependency for the mass bias, (1 - b(SZ)). Adopting this ACT-KiDS SZ mass calibration would bring the Planck SZ cluster count into agreement with the counts expected from the Planck cosmic microwave background Lambda CDM cosmological model, although it should be noted that the cluster sample considered in this work has a lower average mass M-SZ,M- uncor = 3.64 x 10(14) M-circle dot compared to the Planck cluster sample which has an average mass in the range M-SZ,M- uncor = (5.5 - 8.5)x10(14) M-circle dot, depending on the sub-sample used.
- ItemAtacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos(2021) Schaan, Emmanuel; Ferraro, Simone; Amodeo, Stefania; Battaglia, Nicholas; Aiola, Simone; Austermann, Jason E.; Beall, James A.; Bean, Rachel; Becker, Daniel T.; Bond, Richard J.; Calabrese, Erminia; Calafut, Victoria; Choi, Steve K.; Denison, Edward, V; Devlin, Mark J.; Duff, Shannon M.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Dunner, Rolando; Gallardo, Patricio A.; Guan, Yilun; Han, Dongwon; Hill, J. Colin; Hilton, Gene C.; Hilton, Matt; Hlozek, Renee; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Koopman, Brian J.; MacInnis, Amanda; McMahon, Jeff; Madhavacheril, Mathew S.; Moodley, Kavilan; Mroczkowski, Tony; Naess, Sigurd; Nati, Federico; Newburgh, Laura B.; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Salatino, Maria; Sehgal, Neelima; Schillaci, Alessandro; Sifon, Cristobal; Smith, Kendrick M.; Spergel, David N.; Staggs, Suzanne; Storer, Emilie R.; Trac, Hy; Ullom, Joel N.; Van Lanen, Jeff; Vale, Leila R.; van Engelen, Alexander; Magana, Mariana Vargas; Vavagiakis, Eve M.; Wollack, Edward J.; Xu, ZhileiThe scattering of cosmic microwave background (CMB) photons off the free-electron gas in galaxies and clusters leaves detectable imprints on high resolution CMB maps: the thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ respectively). We use combined microwave maps from the Atacama Cosmology Telescope DR5 and Planck in combination with the CMASS (mean redshift (z) = 0.55 and host halo mass (M-vir) = 3 x 10(13) M-circle dot) and LOWZ ((z) = 0.31, (M-vir) = 5 x 10(13) M-circle dot) galaxy catalogs from the Baryon Oscillation Spectroscopic Survey (BOSS DR10 and DR12), to study the gas associated with these galaxy groups. Using individual reconstructed velocities, we perform a stacking analysis and reject the no-kSZ hypothesis at 6.5 sigma, the highest significance to date. This directly translates into a measurement of the electron number density profile, and thus of the gas density profile. Despite the limited signal to noise, the measurement shows at high significance that the gas density profile is more extended than the dark matter density profile, for any reasonable baryon abundance (formally >90 sigma for the cosmic baryon abundance). We simultaneously measure the tSZ signal, i.e., the electron thermal pressure profile of the same CMASS objects, and reject the no-tSZ hypothesis at 10 sigma. We combine tSZ and kSZ measurements to estimate the electron temperature to 20% precision in several aperture bins, and find it comparable to the virial temperature. In a companion paper, we analyze these measurements to constrain the gas thermodynamics and the properties of feedback inside galaxy groups. We present the corresponding LOWZ measurements in this paper, ruling out a null kSZ (tSZ) signal at 2.9 (13.9)sigma, and leave their interpretation to future work. This paper and the companion paper demonstrate that current CMB experiments can detect and resolve gas profiles in low mass halos and at high redshifts, which are the most sensitive to feedback in galaxy formation and the most difficult to measure any other way. They will be a crucial input to cosmological hydrodynamical simulations, thus improving our understanding of galaxy formation. These precise gas profiles arc already sufficient to reduce the main limiting theoretical systematic in galaxy-galaxy lensing: baryonic uncertainties. Future such measurements will thus unleash the statistical power of weak lensing from the Rubin, Euclid and Roman observatories. Our stacking software ThumbStackis publicly available and directly applicable to future Simons Observatory and CMB-S4 data.
- ItemAtacama Cosmology Telescope: High-resolution component-separated maps across one third of the sky(2024) Coulton, William; Madhavacheril, Mathew S.; Duivenvoorden, Adriaan J.; Hill, J. Colin; Abril-Cabezas, Irene; Ade, Peter A. R.; Aiola, Simone; Alford, Tommy; Amiri, Mandana; Amodeo, Stefania; An, Rui; Atkins, Zachary; Austermann, Jason E.; Battaglia, Nicholas; Battistelli, Elia Stefano; Beall, James A.; Bean, Rachel; Beringue, Benjamin; Bhandarkar, Tanay; Biermann, Emily; Bolliet, Boris; Bond, J. Richard; Cai, Hongbo; Calabrese, Erminia; Calafut, Victoria; Capalbo, Valentina; Carrero, Felipe; Chesmore, Grace E.; Cho, Hsiao-Mei; Choi, Steve K.; Clark, Susan E.; Rosado, Rodrigo Cordova; Cothard, Nicholas F.; Coughlin, Kevin; Crowley, Kevin T.; Devlin, Mark J.; Dicker, Simon; Doze, Peter; Duell, Cody J.; Duff, Shannon M.; Dunkley, Jo; Dunner, Rolando; Fanfani, Valentina; Fankhanel, Max; Farren, Gerrit; Ferraro, Simone; Freundt, Rodrigo; Fuzia, Brittany; Gallardo, Patricio A.; Garrido, Xavier; Givans, Jahmour; Gluscevic, Vera; Golec, Joseph E.; Guan, Yilun; Halpern, Mark; Han, Dongwon; Hasselfield, Matthew; Healy, Erin; Henderson, Shawn; Hensley, Brandon; Hervias-Caimapo, Carlos; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Ho, Shuay-Pwu Patty; Huber, Zachary B.; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent; Isopi, Giovanni; Jense, Hidde T.; Keller, Ben; Kim, Joshua; Knowles, Kenda; Koopman, Brian J.; Kosowsky, Arthur; Kramer, Darby; Kusiak, Aleksandra; La Posta, Adrien; Lakey, Victoria; Lee, Eunseong; Li, Zack; Li, Yaqiong; Limon, Michele; Lokken, Martine; Louis, Thibaut; Lungu, Marius; MacCrann, Niall; MacInnis, Amanda; Maldonado, Diego; Maldonado, Felipe; Mallaby-Kay, Maya; Marques, Gabriela A.; van Marrewijk, Joshiwa; McCarthy, Fiona; McMahon, Jeff; Mehta, Yogesh; Menanteau, Felipe; Moodley, Kavilan; Morris, Thomas W.; Mroczkowski, Tony; Naess, Sigurd; Namikawa, Toshiya; Nati, Federico; Newburgh, Laura; Nicola, Andrina; Niemack, Michael D.; Nolta, Michael R.; Orlowski-Scherer, John; Page, Lyman A.; Pandey, Shivam; Partridge, Bruce; Prince, Heather; Puddu, Roberto; Qu, Frank J.; Radiconi, Federico; Robertson, Naomi; Rojas, Felipe; Sakuma, Tai; Salatino, Maria; Schaan, Emmanuel; Schmitt, Benjamin L.; Sehgal, Neelima; Shaikh, Shabbir; Sherwin, Blake D.; Sierra, Carlos; Sievers, Jon; Sifon, Cristobal; Simon, Sara; Sonka, Rita; Spergel, David N.; Staggs, Suzanne T.; Storer, Emilie; Switzer, Eric R.; Tampier, Niklas; Thornton, Robert; Trac, Hy; Treu, Jesse; Tucker, Carole; Ullom, Joel; Vale, Leila R.; Van Engelen, Alexander; Van Lanen, Jeff; Vargas, Cristian; Vavagiakis, Eve M.; Wagoner, Kasey; Wang, Yuhan; Wenzl, Lukas; Wollack, Edward J.; Xu, Zhilei; Zago, Fernando; Zheng, KaiwenObservations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-y distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multiwavelength observations to spectrally isolate one component. In this work, we present a new arc-minute-resolution Compton-y map, which traces out the line-of-sightintegrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13; 000 deg2). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) data release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the Planck satellite at frequencies between 30 and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing Planck componentseparated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB.
- ItemAtacama Cosmology Telescope: Modeling the gas thermodynamics in BOSS CMASS galaxies from kinematic and thermal Sunyaev-Zel'dovich measurements(2021) Amodeo, Stefania; Battaglia, Nicholas; Schaan, Emmanuel; Ferraro, Simone; Moser, Emily; Aiola, Simone; Austermann, Jason E.; Beall, James A.; Bean, Rachel; Becker, Daniel T.; Bond, Richard J.; Calabrese, Erminia; Calafut, Victoria; Choi, Steve K.; Denison, Edward, V; Devlin, Mark; Duff, Shannon M.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Dunner, Rolando; Gallardo, Patricio A.; Hall, Kirsten R.; Han, Dongwon; Hill, J. Colin; Hilton, Gene C.; Hilton, Matt; Hlozek, Renee; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Koopman, Brian J.; MacInnis, Amanda; McMahon, Jeff; Madhavacheril, Mathew S.; Moodley, Kavilan; Mroczkowski, Tony; Naess, Sigurd; Nati, Federico; Newburgh, Laura B.; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Schillaci, Alessandro; Sehgal, Neelima; Sifon, Cristobal; Spergel, David N.; Staggs, Suzanne; Storer, Emilie R.; Ullom, Joel N.; Vale, Leila R.; van Engelen, Alexander; Van Lanen, Jeff; Vavagiakis, Eve M.; Wollack, Edward J.; Xu, ZhileiThe thermal and kinematic Sunyaev-Zel'dovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integrated electron pressure and momentum along the line of sight. We present constraints on the gas thermodynamics of CMASS (constant stellar mass) galaxies in the Baryon Oscillation Spectroscopic Survey using new measurements of the kSZ and tSZ signals obtained in a companion paper [Schaan et al.]. Combining kSZ and tSZ measurements, we measure within our model the amplitude of energy injection epsilon M.c(2) , where M-* is the stellar mass, to be epsilon = (40 +/- 9) x 10(-6) , and the amplitude of the nonthermal pressure profile to be alpha(Nth) < 0.2(2 sigma), indicating that less than 20% of the total pressure within the virial radius is due to a nonthermal component. We estimate the effects of including baryons in the modeling of weak-lensing galaxy cross-correlation measurements using the best-fit density profile from the kSZ measurement. Our estimate reduces the difference between the original theoretical model and the weak-lensing galaxy cross-correlation measurements in [A. Leauthaud et al., Mon. Not. R. Astron. Soc. 467, 3024 (2017)] by half (50% at most), but does not fully reconcile it. Comparing the kSZ and tSZ measurements to cosmological simulations, we find that they underpredict the CGM pressure and to a lesser extent the CGM density at larger radii with probabilities to exceed ranging from 0.00 to 0.03 and 0.12 to 0.14, for tSZ and kSZ, respectively. This suggests that the energy injected via feedback models in the simulations that we compared against does not sufficiently heat the gas at these radii. We do not find significant disagreement at smaller radii. These measurements provide novel tests of current and future simulations. This work demonstrates the power of joint, high signal-to-noise kSZ and tSZ observations, upon which future cross-correlation studies will improve.
- ItemGMRT 610 MHz observations of galaxy clusters in the ACT equatorial sample(2019) Knowles, Kenda; Baker, Andrew J.; Bond, J. Richard; Gallardo, Patricio A.; Gupta, Neeraj; Hilton, Matt; Hughes, John P.; Intema, Huib; Lopez-Caraballo, Carlos H.; Moodley, Kavilan; Schmitt, Benjamin L.; Sievers, Jonathan; Sifon, Cristobal; Wollack, EdwardWe present Giant Metrewave Radio Telescope (GMRT) 610 MHz observations of 14 Atacama Cosmology Telescope (ACT) clusters, including new data for nine. The sample includes 73 per cent of ACT equatorial clusters with M-500 > 5 x 10(14) M-circle dot. We detect diffuse emission in three of these (27(-14)(+20) per cent): we detect a radio minihalo in ACT-CL J0022.2-0036 at z = 0.8, making it the highest redshift minihalo known; we detect potential radio relic emission in ACT-CL J0014.9-0057 (z = 0.533); and we confirm the presence of a radio halo in low-mass cluster ACT-CL J0256.5+0006, with flux density S-610 = 6.3 +/- 0.4 mJy. We also detect residual diffuse emission inACT-CL J0045.9-0152 (z = 0.545), which we cannot conclusively classify. For systems lacking diffuse radio emission, we determine radio halo upper limits in two ways and find via survival analysis that these limits do not significantly affect radio power scaling relations. Several clusters with no diffuse emission detection are known or suspected mergers, based on archival X-ray and/or optical measures; given the limited sensitivity of our observations, deeper observations of these disturbed systems are required in order to rule out the presence of diffuse emission consistent with known scaling relations. In parallel with our diffuse emission results, we present catalogues of individual radio sources, including a few interesting extended sources. Our study represents the first step towards probing the occurrence of diffuse emission in high-redshift (z greater than or similar to 0.5) clusters, and serves as a pilot for statistical studies of larger cluster samples with the new radio telescopes available in the pre-SKA era.
- ItemHerschel and ALMA observations of massive SZE-selected clusters(2018) Wu, John F.; Aguirre, Paula; Baker, Andrew J.; Devlin, Mark J.; Hilton, Matt; Hughes, John P.; Infante Lira, Leopoldo; Lindner, Robert R.; Sifón, Cristóbal
- ItemSALT spectroscopic observations of galaxy clusters detected by ACT and a type II quasar hosted by a brightest cluster galaxy(2015) Kirk, Brian; Hilton, Matt; Cress, Catherine; Crawford, Steven M.; Hughes, John P.; Battaglia, Nicholas; Bond, J. Richard; Burke, Claire; Gralla, M.; Infante Lira, Leopoldo
- ItemSubaru weak lensing measurement of a z=0.81 cluster discovered by the Atacama Cosmology Telescope Survey(2013) Miyatake, Hironao; Nishizawa, Atsushi J.; Takada, Masahiro; Mandelbaum, Rachel; Mineo, Sogo; Aihara, Hiroaki; Spergel, David N.; Bickerton, Steven J.; Bond, J. Richard; Gralla, Megan; Hajian, Amir; Hilton, Matt; Hincks, Adam D.; Hughes, John P.; Infante, Leopoldo; Lin, Yen-Ting; Lupton, Robert H.; Marriage, Tobias A.; Marsden, Danica; Menanteau, Felipe; Miyazaki, Satoshi; Moodley, Kavilan; Niemack, Michael D.; Oguri, Masamune; Price, Paul A.; Reese, Erik D.; Sifon, Cristobal; Wollack, Edward J.; Yasuda, NaokiWe present a Subaru weak lensing measurement of ACT-CL J0022.2-0036, one of the most luminous, high-redshift (z = 0.81) Sunyaev-Zel'dovich (SZ) clusters discovered in the 268 deg(2) equatorial region survey of the Atacama Cosmology Telescope that overlaps with Sloan Digital Sky Survey (SDSS) Stripe 82 field. Ours is the first weak lensing study with Subaru at such high redshifts. For the weak lensing analysis using i'-band images, we use a model-fitting (Gauss-Laguerre shapelet) method to measure shapes of galaxy images, where we fit galaxy images in different exposures simultaneously to obtain best-fitting ellipticities taking into account the different point spread functions (PSFs) in each exposure. We also take into account the astrometric distortion effect on galaxy images by performing the model fitting in the world coordinate system. To select background galaxies behind the cluster at z = 0.81, we use photometric redshift estimates for every galaxy derived from the co-added images of multi-passband Br'i'z'Y, with PSF matching/homogenization. After a photometric redshift cut for background galaxy selection, we detect the tangential weak lensing distortion signal with a total signal-to-noise ratio of about 3.7. By fitting a Navarro-Frenk-White model to the measured shear profile, we find the cluster mass to be M-200 (rho) over barm = [7.5(-2.8)(+3.2)(stat.)(+1.3)(-0.6)(sys.)] x 10(14) M-circle dot h(-1). The weak lensing-derived mass is consistent with previous mass estimates based on the SZ observation, with assumptions of hydrostatic equilibrium and virial theorem, as well as with scaling relations between SZ signal and mass derived from weak lensing, X-ray and velocity dispersion, within the measurement errors. We also show that the existence of ACT-CL J0022.2-0036 at z = 0.81 is consistent with the cluster abundance prediction of the Lambda-dominated cold dark matter structure formation model. We thus demonstrate the capability of Subaru-type ground-based images for studying weak lensing of high-redshift clusters.
- ItemThe Atacama Cosmology Telescope : the LABOCA/ACT Survey of Clusters at All Redshifts(2015) Lindner, Robert; Aguirre Aparicio, Paula; Baker, Andrew J.; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Essinger-Hileman, Thomas; Gallardo, Patricio; Gralla, Megan B.; Hilton, Matt
- ItemThe atacama cosmology telescope : The stellar content of galaxy clusters selected using the sunyaev-zel'dovich effect(2013) Hilton, Matt; Hasselfield, Matthew; Sifon, Cristobal; Baker, Andrew J.; Barrientos, Luis Felipe; Battaglia, Nicholas; Bond, J. Richard; Crichton, Devin; Das, Sudeep; Infante Lira, Leopoldo
- ItemThe atacama cosmology telescope : The two-season ACTPol sunyaev-Zel'dovich effect selected cluster catalog(2018) Hilton, Matt; Hasselfield, Matthew; Sifón, Cristóbal; Battaglia, Nicholas; Aiola, Simone; Bharadwaj, V.; Bond, J.Richard,; Choi, Steve K.; Dünner Planella, Rolando; Maurin, Loïc Benjamin
- ItemThe Atacama Cosmology Telescope : The Two-season ACTPol Sunyaev-Zel'dovich Effect Selected Cluster Catalog(2019) Hilton, Matt; Hasselfield, Matthew; Sifón, Cristóbal; Battaglia, Nicholas; Aiola, Simone; Bharadwaj, V.; Richard Bond, J.; Choi, Steve K.; Dunner Planella, Rolando; Maurin, Loïc Benjamin
- ItemThe Atacama Cosmology Telescope: a CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxies(2021) Darwish, Omar; Madhavacheril, Mathew S.; Sherwin, Blake D.; Aiola, Simone; Battaglia, Nicholas; Beall, James A.; Becker, Daniel T.; Bond, J. Richard; Calabrese, Erminia; Choi, Steve K.; Devlin, Mark J.; Dunkley, Jo; Dunner, Rolando; Ferraro, Simone; Fox, Anna E.; Gallardo, Patricio A.; Guan, Yilun; Halpern, Mark; Han, Dongwon; Hasselfield, Matthew; Hill, J. Colin; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Ho, Shuay-Pwu Patty; Hubmayr, J.; Hughes, John P.; Koopman, Brian J.; Kosowsky, Arthur; Van Lanen, J.; Louis, Thibaut; Lungu, Marius; MacInnis, Amanda; Maurin, Loic; McMahon, Jeffrey; Moodley, Kavilan; Naess, Sigurd; Namikawa, Toshiya; Nati, Federico; Newburgh, Laura; Nibarger, John P.; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Qu, Frank J.; Robertson, Naomi; Schillaci, Alessandro; Schmitt, Benjamin; Sehgal, Neelima; Sifon, Cristobal; Spergel, David N.; Staggs, Suzanne; Storer, Emilie; van Engelen, Alexander; Wollack, Edward J.We construct cosmic microwave background lensing mass maps using data from the 2014 and 2015 seasons of observations with the Atacama Cosmology Telescope (ACT). These maps cover 2100 square degrees of sky and overlap with a wide variety of optical surveys. The maps are signal dominated on large scales and have fidelity such that their correlation with the cosmic infrared background is clearly visible by eye. We also create lensing maps with thermal Sunyaev-Zel'dovich contamination removed using a novel cleaning procedure that only slightly degrades the lensing signal-to-noise ratio. The cross-spectrum between the cleaned lensing map and the BOSS CMASS galaxy sample is detected at 10 sigma significance, with an amplitude of A = 1.02 +/- 0.10 relative to the Planck best-fitting Lambda cold dark matter cosmological model with fiducial linear galaxy bias. Our measurement lays the foundation for lensing cross-correlation science with current ACT data and beyond.
- ItemThe Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz(2020) Choi, Steve K.; Hasselfield, Matthew; Ho, Shuay-Pwu Patty; Koopman, Brian; Lungu, Marius; Abitbol, Maximilian H.; Addison, Graeme E.; Ade, Peter A. R.; Aiola, Simone; Alonso, David; Amiri, Mandana; Amodeo, Stefania; Angile, Elio; Austermann, Jason E.; Baildon, Taylor; Battaglia, Nick; Beall, James A.; Bean, Rachel; Becker, Daniel T.; Bond, J. Richard; Bruno, Sarah Marie; Calabrese, Erminia; Calafut, Victoria; Campusano, Luis E.; Carrero, Felipe; Chesmore, Grace E.; Cho, Hsiao-mei; Clark, Susan E.; Cothard, Nicholas F.; Crichton, Devin; Crowley, Kevin T.; Darwish, Omar; Datta, Rahul; Denison, Edward, V; Devlin, Mark J.; Duell, Cody J.; Duff, Shannon M.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Dunner, Rolando; Essinger-Hileman, Thomas; Fankhanel, Max; Ferraro, Simone; Fox, Anna E.; Fuzia, Brittany; Gallardo, Patricio A.; Gluscevic, Vera; Golec, Joseph E.; Grace, Emily; Gralla, Megan; Guan, Yilun; Hall, Kirsten; Halpern, Mark; Han, Dongwon; Hargrave, Peter; Henderson, Shawn; Hensley, Brandon; Hill, J. Colin; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Infante, Leopoldo; Irwin, Kent; Jackson, Rebecca; Klein, Jeff; Knowles, Kenda; Kosowsky, Arthur; Lakey, Vincent; Li, Dale; Li, Yaqiong; Li, Zack; Lokken, Martine; Louis, Thibaut; MacInnis, Amanda; Madhavacheril, Mathew; Maldonado, Felipe; Mallaby-Kay, Maya; Marsden, Danica; Maurin, Loic; McMahon, Jeff; Menanteau, Felipe; Moodley, Kavilan; Morton, Tim; Naess, Sigurd; Namikawa, Toshiya; Nati, Federico; Newburgh, Laura; Nibarger, John P.; Nicola, Andrina; Niemack, Michael D.; Nolta, Michael R.; Orlowski-Sherer, John; Page, Lyman A.; Pappas, Christine G.; Partridge, Bruce; Phakathi, Phumlani; Prince, Heather; Puddu, Roberto; Qu, Frank J.; Rivera, Jesus; Robertson, Naomi; Rojas, Felipe; Salatino, Maria; Schaan, Emmanuel; Schillaci, Alessandro; Schmitt, Benjamin L.; Sehgal, Neelima; Sherwin, Blake D.; Sierra, Carlos; Sievers, Jon; Sifon, Cristobal; Sikhosana, Precious; Simon, Sara; Spergel, David N.; Staggs, Suzanne T.; Stevens, Jason; Storer, Emilie; Sunder, Dhaneshwar D.; Switzer, Eric R.; Thorne, Ben; Thornton, Robert; Trac, Hy; Treu, Jesse; Tucker, Carole; Vale, Leila R.; Van Engelen, Alexander; Van Lanen, Jeff; Vavagiakis, Eve M.; Wagoner, Kasey; Wang, Yuhan; Ward, Jonathan T.; Wollack, Edward J.; Xu, Zhilei; Zago, Fernando; Zhu, NingfengWe present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg(2) of the 2013-2016 survey, which covers >15000 deg(2) at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the likelihood for the cosmological analysis we constrain secondary sources of anisotropy and foreground emission, and derive a "CMB-only" spectrum that extends to l = 4000. At large angular scales, foreground emission at 150 GHz is similar to 1% of TT and EE within our selected regions and consistent with that found by Planck. Using the same likelihood, we obtain the cosmological parameters for Lambda CDM for the ACT data alone with a prior on the optical depth of tau = 0.065 +/- 0.015. Lambda CDM is a good fit. The best-fit model has a reduced chi(2) of 1.07 (PTE = 0.07) with H-0 = 67.9 +/- 1.5 km/s/Mpc. We show that the lensing BB signal is consistent with Lambda CDM and limit the celestial EB polarization angle to psi(P) = 0.07 degrees +/- 0.09 degrees. We directly cross correlate ACT with Planck and observe generally good agreement but with some discrepancies in TE. All data on which this analysis is based will be publicly released.
- ItemThe Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth(2024) Qu, Frank; Sherwin, Blake D.; Madhavacheril, Mathew S.; Han, Dongwon; Crowley, Kevin T.; Abril-Cabezas, Irene; Ade, Peter A. R.; Aiola, Simone; Alford, Tommy; Amiri, Mandana; Amodeo, Stefania; An, Rui; Atkins, Zachary; Austermann, Jason E.; Battaglia, Nicholas; Battistelli, Elia Stefano; Beall, James A.; Bean, Rachel; Beringue, Benjamin; Bhandarkar, Tanay; Biermann, Emily; Bolliet, Boris; Bond, J. Richard; Cai, Hongbo; Calabrese, Erminia; Calafut, Victoria; Capalbo, Valentina; Carrero, Felipe; Carron, Julien; Challinor, Anthony; Chesmore, Grace E.; Cho, Hsiao-Mei; Choi, Steve K.; Clark, Susan E.; Rosado, Rodrigo Cordova; Cothard, Nicholas F.; Coughlin, Kevin; Coulton, William; Dalal, Roohi; Darwish, Omar; Devlin, Mark J.; Dicker, Simon; Doze, Peter; Duell, Cody J.; Duff, Shannon M.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Dunner, Rolando; Fanfani, Valentina; Fankhanel, Max; Farren, Gerrit; Ferraro, Simone; Freundt, Rodrigo; Fuzia, Brittany; Gallardo, Patricio A.; Garrido, Xavier; Gluscevic, Vera; Golec, Joseph E.; Guan, Yilun; Halpern, Mark; Harrison, Ian; Hasselfield, Matthew; Healy, Erin; Henderson, Shawn; Hensley, Brandon; Hervias-Caimapo, Carlos; Hill, J. Colin; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Ho, Shuay-Pwu Patty; Huber, Zachary B.; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent; Isopi, Giovanni; Jense, Hidde T.; Keller, Ben; Kim, Joshua; Knowles, Kenda; Koopman, Brian J.; Kosowsky, Arthur; Kramer, Darby; Kusiak, Aleksandra; La Posta, Adrien; Lague, Alex; Lakey, Victoria; Lee, Eunseong; Li, Zack; Li, Yaqiong; Limon, Michele; Lokken, Martine; Louis, Thibaut; Lungu, Marius; MacCrann, Niall; MacInnis, Amanda; Maldonado, Diego; Maldonado, Felipe; Mallaby-Kay, Maya; Marques, Gabriela A.; McMahon, Jeff; Mehta, Yogesh; Menanteau, Felipe; Moodley, Kavilan; Morris, Thomas W.; Mroczkowski, Tony; Naess, Sigurd; Namikawa, Toshiya; Nati, Federico; Newburgh, Laura; Nicola, Andrina; Niemack, Michael D.; Nolta, Michael R.; Orlowski-Scherer, John; Page, Lyman A.; Pandey, Shivam; Partridge, Bruce; Prince, Heather; Puddu, Roberto; Radiconi, Federico; Robertson, Naomi; Rojas, Felipe; Sakuma, Tai; Salatino, Maria; Schaan, Emmanuel; Schmitt, Benjamin L.; Sehgal, Neelima; Shaikh, Shabbir; Sierra, Carlos; Sievers, Jon; Sifon, Cristobal; Simon, Sara; Sonka, Rita; Spergel, David N.; Staggs, Suzanne T.; Storer, Emilie; Switzer, Eric R.; Tampier, Niklas; Thornton, Robert; Trac, Hy; Treu, Jesse; Tucker, Carole; Ullom, Joel; Vale, Leila R.; Van Engelen, Alexander; Van Lanen, Jeff; van Marrewijk, Joshiwa; Vargas, Cristian; Vavagiakis, Eve M.; Wagoner, Kasey; Wang, Yuhan; Wenzl, Lukas; Wollack, Edward J.; Xu, Zhilei; Zago, Fernando; Zheng, KaiwenWe present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2 of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43 sigma significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude of A lens = 1.013 +/- 0.023 relative to the Planck 2018 CMB power spectra best-fit Lambda CDM model and A lens = 1.005 +/- 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBL equivalent to sigma 8 omega m/0.30.25 of S8CMBL=0.818 +/- 0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813 +/- 0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with Lambda CDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshifts z similar to 0.5-5 are thus fully consistent with Lambda CDM structure growth predictions based on CMB anisotropies probing primarily z similar to 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts.
- ItemThe Atacama Cosmology Telescope: arcminute-resolution maps of 18 000 square degrees of the microwave sky from ACT 2008-2018 data combined with Planck(2020) Naess, Sigurd; Aiola, Simone; Austermann, Jason E.; Battaglia, Nick; Beall, James A.; Becker, Daniel T.; Bond, Richard J.; Calabrese, Erminia; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin T.; Darwish, Omar; Datta, Rahul; Denison, Edward, V; Devlin, Mark; Duell, Cody J.; Duff, Shannon M.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Duenner, Rolando; Fox, Anna E.; Gallardo, Patricio A.; Halpern, Mark; Han, Dongwon; Hasselfield, Matthew; Hill, J. Colin; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Huffenberger, Kevin; Hughes, John P.; Kosowsky, Arthur B.; Louis, Thibaut; Madhavacheril, Mathew S.; McMahon, Jeff; Moodley, Kavilan; Nati, Federico; Nibarger, John P.; Niemack, Michael D.; Page, Lyman; Partridge, Bruce; Salatino, Maria; Schaan, Emmanuel; Schillaci, Alessandro; Schmitt, Benjamin; Sherwin, Blake D.; Sehgal, Neelima; Sifon, Cristobal; Spergel, David; Staggs, Suzanne; Stevens, Jason; Storer, Emilie; Ullom, Joel N.; Vale, Leila R.; Van Engelen, Alexander; Van Lanen, Jeff; Vavagiakis, Eve M.; Wollack, Edward J.; Xu, ZhileiThis paper presents a maximum-likelihood algorithm for combining sky maps with disparate sky coverage, angular resolution and spatially varying anisotropic noise into a single map of the sky. We use this to merge hundreds of individual maps covering the 2008-2018 ACT observing seasons, resulting in by far the deepest ACT maps released so far. We also combine the maps with the full Planck maps, resulting in maps that have the best features of both Planck and ACT: Planck's nearly white noise on intermediate and large angular scales and ACT's high-resolution and sensitivity on small angular scales. The maps cover over 18 000 square degrees, nearly half the full sky, at 100, 150 and 220 GHz. They reveal 4 000 optically-confirmed clusters through the Sunyaev Zel'dovich effect (SZ) and 18 500 point source candidates at > 5 sigma, the largest single collection of SZ clusters and millimeter wave sources to date. The multi-frequency maps provide millimeter images of nearby galaxies and individual Milky Way nebulae, and even clear detections of several nearby stars. Other anticipated uses of these maps include, for example, thermal SZ and kinematic SZ cluster stacking, CMB cluster lensing and galactic dust science. The method itself has negligible bias. However, due to the preliminary nature of some of the component data sets, we caution that these maps should not be used for precision cosmological analysis. The maps are part of ACT DR5, and will be made available on LAMBDA no later than three months after the journal publication of this article, along with an interactive sky atlas.
- ItemTHE ATACAMA COSMOLOGY TELESCOPE: CALIBRATION WITH THE WILKINSON MICROWAVE ANISOTROPY PROBE USING CROSS-CORRELATIONS(2011) Hajian, Amir; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Felipe Barrientos, L.; Battistelli, Elia S.; Bond, John R.; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W. Bertrand; Dunkley, Joanna; Duenner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Halpern, Mark; Hasselfield, Matthew; Hernandez-Monteagudo, Carlos; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Huffenberger, Kevin M.; Hughes, David H.; Hughes, John P.; Infante, Leopoldo; Irwin, Kent D.; Baptiste Juin, Jean; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M.; Limon, Michele; Lin, Yen-Ting; Lupton, Robert H.; Marriage, Tobias A.; Marsden, Danica; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B.; Niemack, Michael D.; Nolta, Michael R.; Page, Lyman A.; Parker, Lucas; Partridge, Bruce; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jon; Spergel, David N.; Staggs, Suzanne T.; Swetz, Daniel S.; Switzer, Eric R.; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wollack, Ed; Zhao, YueWe present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and map-making procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < l < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.
- ItemThe Atacama Cosmology Telescope: Cosmology from Cross-correlations of unWISE Galaxies and ACT DR6 CMB Lensing(2024) Farren, Gerrit S.; Krolewski, Alex; MacCrann, Niall; Ferraro, Simone; Abril-Cabezas, Irene; An, Rui; Atkins, Zachary; Battaglia, Nicholas; Bond, J. Richard; Calabrese, Erminia; Choi, Steve K.; Darwish, Omar; Devlin, Mark J.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Hill, J. Colin; Hilton, Matt; Huffenberger, Kevin M.; Kim, Joshua; Louis, Thibaut; Madhavacheril, Mathew S.; Marques, Gabriela A.; McMahon, Jeff; Moodley, Kavilan; Page, Lyman A.; Partridge, Bruce; Qu, Frank J.; Schaan, Emmanuel; Sehgal, Neelima; Sherwin, Blake D.; Sifon, Cristobal; Staggs, Suzanne T.; Van Engelen, Alexander; Vargas, Cristian; Wenzl, Lukas; White, Martin; Wollack, Edward J.We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck cosmic microwave background (CMB) lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges 0.2 less than or similar to z less than or similar to 1.1 and 0.3 less than or similar to z less than or similar to 1.8, respectively. We improve on prior unWISE cross-correlations not just by making use of the new, high-precision ACT DR6 lensing maps, but also by including additional spectroscopic data for redshift calibration and by analyzing our measurements with a more flexible theoretical model. We determine the amplitude of matter fluctuations at low redshifts (z similar or equal to 0.2-1.6), finding S 8 equivalent to sigma 8 ( Omega m / 0.3 ) 0.5 = 0.813 +/- 0.021 using the ACT cross-correlation alone and S 8 = 0.810 +/- 0.015 with a combination of Planck and ACT cross-correlations; these measurements are fully consistent with the predictions from primary CMB measurements assuming standard structure growth. The addition of baryon acoustic oscillation data breaks the degeneracy between sigma 8 and Omega m , allowing us to measure sigma 8 = 0.813 +/- 0.020 from the cross-correlation of unWISE with ACT and sigma 8 = 0.813 +/- 0.015 from the combination of cross-correlations with ACT and Planck. These results also agree with the expectations from primary CMB extrapolations in Lambda CDM cosmology; the consistency of sigma 8 derived from our two redshift samples at z similar to 0.6 and 1.1 provides a further check of our cosmological model. Our results suggest that structure formation on linear scales is well described by Lambda CDM even down to low redshifts z less than or similar to 1.