Browsing by Author "Huanel, Oscar R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemComparative phylogeography of twoAgarophytonspecies in the New Zealand archipelago(2020) Huanel, Oscar R.; Nelson, Wendy E.; Robitzch, Vanessa; Mauger, Stéphane; Faugeron, Sylvain; Preuss, Maren; Zuccarello, Giuseppe C.; Guillemin, Marie Laure
- ItemDifferential Frond Growth in the Isomorphic Haploid-diploid Red Seaweed Agarophyton chilense by Long-term In Situ Monitoring(1)(2021) Vieira, Vasco M.N.C.S.; Engelen, Aschwin H.; Huanel, Oscar R.; Guillemin, Marie Laure
- ItemDifferentiation of haploid and diploid fertilities in Gracilaria chilensis affect ploidy ratio(2018) Huanel, Oscar R.; Vieira, Vasco M. N. C. S.; Engelen, Aschwin H.; Guillemin, Marie-Laure.Abstract Background Algal isomorphic biphasic life cycles alternate between free-living diploid (tetrasporophytes) and haploid (dioicious gametophytes) phases and the hypotheses explaining their maintenance are still debated. Classic models state that conditional differentiation between phases is required for the evolutionary stability of biphasic life cycles while other authors proposed that the uneven ploidy abundances observed in the field are explained by their cytological differences in spore production. Results We monitored the state and fate of individuals of the red seaweed Gracilaria chilensis periodically for 3 years in five intertidal pools from two sites with distinct conditions. We tested for differentiation in fecundity and spore survival among the gametophyte males and females (haploids) and the tetrasporophytes (diploids). We tested for the influence of fecundity and spore survival on the observed uneven ploidy abundances in recruits. The probability of a frond becoming fecund was size-dependent, highest for the haploid males and lowest for the haploid females, with the diploids displaying intermediate probabilities. Fecund diploids released more tetraspores than carpospores released by the haploid females. Spore survival depended on ploidy and on the local density of co-habiting adult fronds. An advantage of diploid over haploid germlings was observed at very low and very high adult fronds densities. Conclusions Neither spore production nor spore survival determined the highly variable ploidy ratio within G. chilensis recruits. This result invalidates the hypothesis of natural cytological differences in spore production as the only driver of uneven field ploidy abundances in this species. Diploid spores (carpospores) survived better than haploid spores (tetraspores), especially in locations and time periods that were associated with the occurrence of strong biotic and abiotic stressors. We hypothesise that carpospore survival is higher due to support by their haploid female progenitors passing-on nutrients and chemical compounds improving survival under stressful conditions.Abstract Background Algal isomorphic biphasic life cycles alternate between free-living diploid (tetrasporophytes) and haploid (dioicious gametophytes) phases and the hypotheses explaining their maintenance are still debated. Classic models state that conditional differentiation between phases is required for the evolutionary stability of biphasic life cycles while other authors proposed that the uneven ploidy abundances observed in the field are explained by their cytological differences in spore production. Results We monitored the state and fate of individuals of the red seaweed Gracilaria chilensis periodically for 3 years in five intertidal pools from two sites with distinct conditions. We tested for differentiation in fecundity and spore survival among the gametophyte males and females (haploids) and the tetrasporophytes (diploids). We tested for the influence of fecundity and spore survival on the observed uneven ploidy abundances in recruits. The probability of a frond becoming fecund was size-dependent, highest for the haploid males and lowest for the haploid females, with the diploids displaying intermediate probabilities. Fecund diploids released more tetraspores than carpospores released by the haploid females. Spore survival depended on ploidy and on the local density of co-habiting adult fronds. An advantage of diploid over haploid germlings was observed at very low and very high adult fronds densities. Conclusions Neither spore production nor spore survival determined the highly variable ploidy ratio within G. chilensis recruits. This result invalidates the hypothesis of natural cytological differences in spore production as the only driver of uneven field ploidy abundances in this species. Diploid spores (carpospores) survived better than haploid spores (tetraspores), especially in locations and time periods that were associated with the occurrence of strong biotic and abiotic stressors. We hypothesise that carpospore survival is higher due to support by their haploid female progenitors passing-on nutrients and chemical compounds improving survival under stressful conditions.
- ItemHaploid females in the isomorphic biphasic life-cycle of Gracilaria chilensis excel in survival(2018) Huanel, Oscar R.; Vieira, Vasco M. N. C. S.; Engelen, Aschwin H.; Guillemin, Marie-Laure.Abstract Background Conditional differentiation is one of the most fundamental drivers of biodiversity. Competitive entities (usually species) differ in environmental or ecological niche enabling them to co-exist. Conditional differentiation of haploid and diploid generations is considered to be a requirement for the evolutionary stability of isomorphic biphasic life-cycles and the cause for the natural occurrence of both phases at uneven abundances. Theoretically, stage dependent survival rates are the most efficient way to explain conditional differentiation. Results We tested for conditional differentiation in survival rates among life stages (haploid males, haploid females, and diploids) of Gracilaria chilensis, an intertidal red alga occurring along the Chilean shores. Therefore, the fate of individuals was followed periodically for 3 years in five intertidal pools and, for the first time in isomorphic red algae, a composite model of the instantaneous survival rates was applied. The results showed the survival dependency on density (both competition and Allee effects), fertility, age, size, season and location, as well as the differentiation among stages for the survival dependencies of these factors. The young haploid females survived more than the young of the other stages under Allee effects during the environmentally stressful season at the more exposed locations, and under self-thinning during the active growth season. Furthermore, fertile haploid females had a higher survival than fertile haploid males or fertile diploids. Conclusions Here, we show a survival advantage of haploids over diploids. The haploid females probably optimize their resource management targeting structural and physiological adaptations that significantly enhance survival under harsher conditions. In a companion paper we demonstrate a fertility advantage of diploids over haploids. Together, the survival and fertility differentiation support the evolution and prevalence of biphasic life-cycles.Abstract Background Conditional differentiation is one of the most fundamental drivers of biodiversity. Competitive entities (usually species) differ in environmental or ecological niche enabling them to co-exist. Conditional differentiation of haploid and diploid generations is considered to be a requirement for the evolutionary stability of isomorphic biphasic life-cycles and the cause for the natural occurrence of both phases at uneven abundances. Theoretically, stage dependent survival rates are the most efficient way to explain conditional differentiation. Results We tested for conditional differentiation in survival rates among life stages (haploid males, haploid females, and diploids) of Gracilaria chilensis, an intertidal red alga occurring along the Chilean shores. Therefore, the fate of individuals was followed periodically for 3 years in five intertidal pools and, for the first time in isomorphic red algae, a composite model of the instantaneous survival rates was applied. The results showed the survival dependency on density (both competition and Allee effects), fertility, age, size, season and location, as well as the differentiation among stages for the survival dependencies of these factors. The young haploid females survived more than the young of the other stages under Allee effects during the environmentally stressful season at the more exposed locations, and under self-thinning during the active growth season. Furthermore, fertile haploid females had a higher survival than fertile haploid males or fertile diploids. Conclusions Here, we show a survival advantage of haploids over diploids. The haploid females probably optimize their resource management targeting structural and physiological adaptations that significantly enhance survival under harsher conditions. In a companion paper we demonstrate a fertility advantage of diploids over haploids. Together, the survival and fertility differentiation support the evolution and prevalence of biphasic life-cycles.