Browsing by Author "Jose Marchant, Maria"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGold@Silica Nanoparticles Functionalized with Oligonucleotides: A Prominent Tool for the Detection of the Methylated Reprimo Gene in Gastric Cancer by Dynamic Light Scattering(2019) Jose Marchant, Maria; Guzman, Leda; Corvalan, Alejandro H.; Kogan, Marcelo J.Reprimo (RPRM) is a tumor suppressor gene involved in the development of gastric cancer. Hypermethylation of the RPRM promoter region has been found in tumor tissue and plasma samples from patients with gastric cancer. These findings suggest that circulating methylated DNA of RPRM could be a candidate for a noninvasive detection of gastric cancer. We designed a nanosystem based on the functionalization of silica coated gold nanoparticles with oligonucleotides that recognize a specific DNA fragment of the RPRM promoter region. The functionality of the oligonucleotide on the surface of the nanoparticle was confirmed by polymerase chain reaction (PCR). The nanoparticles were incubated with a synthetic DNA fragment of methylated DNA of RPRM and changes in the size distribution after hybridization were evaluated by dynamic light scattering (DLS). A difference in the size distribution of nanoparticles hybridized with genomic DNA from the KATO III gastric cancer cell line was observed when was compared with DNA from the GES-1 normal cell line. These results showed that this nanosystem may be a useful tool for the specific and sensitive detection of methylated DNA of RPRM in patients at risk of developing gastric cancer.
- ItemIn vitro evaluation and molecular docking of QS-21 and quillaic acid from Quillaja saponaria Molina as gastric cancer agents(NATURE RESEARCH, 2020) Guzman, Leda; Villalon, Katherine; Jose Marchant, Maria; Elena Tarnok, Maria; Cardenas, Pilar; Aquea, Gisela; Acevedo, Waldo; Padilla, Leandro; Bernal, Giuliano; Molinari, Aurora; Corvalan, AlejandroThe cytotoxic mechanism of the saponin QS-21 and its aglycone quillaic acid (QA) was studied on human gastric cancer cells (SNU1 and KATO III). Both compounds showed in vitro cytotoxic activity with IC50 values: 7.1 mu M (QS-21) and 13.6 mu M (QA) on SNU1 cells; 7.4 mu M (QS-21) and 67 mu M (QA) on KATO III cells. QS-21 and QA induce apoptosis on SNU1 and KATO III, as demonstrated by TUNEL, Annexin-V and Caspase Assays. Additionally, we performed in silico docking studies simulating the binding of both triterpenic compounds to key proteins involved in apoptotic pathways. The binding energies (G(bin)) thus calculated, suggest that the pro-apoptotic protein Bid might be a plausible target involved in the apoptotic effect of both triterpenic compounds. Although QA shows some antiproliferative effects on SNU1 cells cultured in vitro, our results suggest that QS-21 is a more powerful antitumor agent, which merits further investigation regarding their properties as potential therapeutic agents for gastric cancer.