Browsing by Author "Kaur, Jaskiran"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBiomedical Applications of polymeric micelles in the treatment of diabetes mellitus: Current success and future approaches(2022) Kaur, Jaskiran; Gulati, Monica; Zacconi, Flavia C. M.; Dureja, Harish; Loebenberg, Raimar; Ansari, Md Salahuddin; AlOmeir, Othman; Alam, Aftab; Chellappan, Dinesh Kumar; Gupta, Gaurav; Jha, Niraj Kumar; Pinto, Terezinha de Jesus Andreoli; Morris, Andrew; Choonara, Yahya E.; Adams, Jon; Dua, Kamal; Singh, Sachin KumarIntroduction Diabetes mellitus (DM) is the most common metabolic disease and multifactorial, harming patients worldwide. Extensive research has been carried out in the search for novel drug delivery systems offering reliable control of glucose levels for diabetics, aiming at efficient management of DM. Areas covered Polymeric micelles (PMs) as smart drug delivery nanocarriers are discussed, focusing on oral drug delivery applications for the management of hyperglycemia. The most recent approaches used for the preparation of smart PMs employ molecular features of amphiphilic block copolymers (ABCs), such as stimulus sensitivity, ligand conjugation, and as a more specific example the ability to inhibit islet amyloidosis. Expert opinion PMs provide a unique platform for self-regulated or spatiotemporal drug delivery, mimicking the working mode of pancreatic islets to maintain glucose homeostasis for prolonged periods. This unique characteristic is achieved by tailoring the functional chemistry of ABCs considering the physicochemical traits of PMs, including sensing capabilities, hydrophobicity, etc. In addition, the application of ABCs for the inhibition of conformational changes in islet amyloid polypeptide garnered attention as one of the root causes of DM. However, research in this field is limited and further studies at the clinical level are required.
- ItemSelf-nanoemulsifying composition containing curcumin, quercetin, Ganoderma lucidum extract powder and probiotics for effective treatment of type 2 diabetes mellitus in streptozotocin induced rats(Elsevier B.V., 2022) Khursheed, Rubiya; Singh, Sachin Kumar; Kumar, Bimlesh; Wadhwa, Sheetu; Gulati, Mónica; Anupriya, A.; Awasthi, Ankit; Vishwas, Sukriti; Kaur, Jaskiran; Corrie, Leander; Arya, K. R.; Kumar, Rajan; Jha, Niraj Kumar; Gupta, Piyush Kumar; Zacconi, Flavia C. M.; Dua, Kamal; Chitranshi, Nitin; Mustafa, Gulam; Kumar, AnkitLiquid self-nanoemulsifying drug delivery system (L-SNEDDS) of curcumin and quercetin were prepared by dissolving them in isotropic mixture of Labrafil M1944CS®, Capmul MCM®, Tween-80® and Transcutol P®. The prepared L-SNEDDS were solidified using Ganoderma lucidum extract, probiotics and Aerosil-200® using spray drying. These were further converted into pellets using extrusion-spheronization. The mean droplet size and zeta potential of L-SNEDDS were found to be 63.46 ± 2.12 nm and − 14.8 ± 3.11 mV while for solid SNEDDS pellets, these were 72.46 ± 2.16 nm and −38.7 ± 1.34 mV, respectively. The dissolution rate for curcumin and quercetin each was enhanced by 4.5 folds while permeability was enhanced by 5.28 folds (curcumin) and 3.35 folds (quercetin) when loaded into SNEDDS pellets. The Cmax for curcumin and quercetin containing SNEDDS pellets was found 532.34 ± 5.64 ng/mL and 4280 ± 65.67 ng/mL, respectively. This was 17.55 and 3.48 folds higher as compared to their naïve forms. About 50.23– and 5.57-folds increase in bioavailability was observed for curcumin and quercetin respectively, upon loading into SNEDDS pellets. SNEDDS pellets were found stable at accelerated storage conditions. The developed formulation was able to normalize the levels of blood glucose, lipids, antioxidant biomarkers, and tissue architecture of pancreas and liver in streptozotocin induced diabetic rats as compared to their naïve forms.