Browsing by Author "Krieger, M"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemDown-regulation of intestinal scavenger receptor class B, type I (SR-BI) expression in rodents under conditions of deficient bile delivery to the intestine(PORTLAND PRESS LTD, 2001) Voshol, PJ; Schwarz, M; Rigotti, A; Krieger, M; Groen, AK; Kuipers, FScavenger receptor class B, type I (SR-BI) is expressed in the intestines of rodents and has been suggested to be involved in the absorption of dietary cholesterol. The aim of this study was to determine whether intestinal SR-BI expression is affected in animal models with altered bile delivery to the intestine and impaired cholesterol absorption. SR-BI protein and mRNA levels were determined in proximal and distal small intestine from control, bile-duct-ligated and bile-diverted rats and from control and bile-duct-ligated mice. Two genetically altered mouse models were studied: multidrug resistance-2 P-glycoprotein-deficient [Mdr2((-/-))] mice that produce phospholipid/cholesterol-free bile, and cholesterol 7 alpha -hydroxylase-deficient [Cyp7a((-/-))] mice, which exhibit qualitative and quantitative changes in the bile-salt pool. Cholesterol-absorption efficiency was quantified using a dual-isotope ratio method. SR-BI was present at the apical membrane of enterocytes in control rats and mice and was more abundant in proximal than in distal segments of the intestine. In bile-duct-ligated animals, levels of SR-BI protein were virtually absent and mRNA levels were decreased by approximate to 50 %. Bile-diverted rats, Mdr2((-/-)) mice and Cyp7a((-/-)) mice showed decreased levels of intestinal SR-BI protein while mRNA levels were unaffected. Cholesterol absorption was reduced by > 90% in bile-duct-ligated and bile-diverted animals and in Cyp7a((-/-)) mice, whereas Mdr2((-/-)) mice showed an approximate to 50% reduction. This study shows that SR-BI is expressed at the apical membrane of enterocytes of rats and mice; mainly in the upper intestine where cholesterol absorption is greatest, and indicates that bile components play a role in post-transcriptional regulation of SR-BI expression. Factors associated with cholestasis appear to be involved in transcriptional control of intestinal SR-BI expression. The role of SR-BI in the cholesterol-absorption process remains to be defined.
- ItemEffects of hepatic expression of the high-density lipoprotein receptor SR-BI on lipoprotein metabolism and female fertility(ENDOCRINE SOC, 2006) Yesilaltay, A; Morales, MG; Amigo, L; Zanlungo, S; Rigotti, A; Karackattu, SL; Donahee, MH; Kozarsky, KF; Krieger, MThe etiology of human female infertility is often uncertain. The sterility of high-density lipoprotein (HDL) receptor-negative (SR-BI-/-) female mice suggests a link between female infertility and abnormal lipoprotein metabolism. SR-BI-/- mice exhibit elevated plasma total cholesterol [ with normalsized and abnormally large HDL and high unesterified to total plasma cholesterol (UC:TC) ratio]. We explored the influence of hepatic SR-BI on female fertility by inducing hepatic SR-BI expression in SR-BI-/- animals by adenovirus transduction or stable transgenesis. For transgenes, we used both wild-type SR-BI and a double-point mutant, Q402R/Q418R (SR-BI-RR), which is unable to bind to and mediate lipid transfer from wild-type HDL normally, but retains virtually normal lipid transport activities with low-density lipoprotein. Essentially wild-type levels of hepatic SR-BI expression in SR-BI-/- mice restored to nearly normal the HDL size distribution and plasma UC: TC ratio, whereas approximately 7- to 40- fold overexpression dramatically lowered plasma TC and increased biliary cholesterol secretion. In contrast, SR-BI-RR overexpression had little effect on SR-BI-/- mice, but in SR-BI-/- mice, it substantially reduced levels of abnormally large HDL and normalized the UC: TC ratio. In all cases, hepatic transgenic expression restored female fertility. Overexpression in SR-BI-/- mice of lecithin: cholesterol acyl transferase, which esterifies plasma HDL cholesterol, did not normalize the UC: TC ratio, probably because the abnormal HDL was a poor substrate, and did not restore fertility. Thus, hepatic SR- BImediated lipoprotein metabolism influences murine female fertility, raising the possibility that dyslipidemia might contribute to human female infertility and that targeting lipoprotein metabolism might complement current assisted reproductive technologies.
- ItemHepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice(LIPID RESEARCH INC, 2001) Mardones, P; Quinones, V; Amigo, L; Moreno, M; Miquel, JF; Schwarz, M; Miettinen, HE; Trigatti, B; Krieger, M; VanPatten, S; Cohen, DE; Rigotti, AThe scavenger receptor class B type I (SR-BI), which is expressed in the liver and intestine, plays a critical role in cholesterol metabolism in rodents. While hepatic SR-BI expression controls high density lipoprotein (HDL) cholesterol metabolism, intestinal SR-BI has been proposed to facilitate cholesterol absorption. To evaluate further the relevance of SR-BI in the enterohepatic circulation of cholesterol and bile salts, we studied biliary lipid secretion, hepatic sterol content and synthesis, bile acid metabolism, fecal neutral sterol excretion, and intestinal cholesterol absorption in SR-BI knockout mice. SR-BI deficiency selectively impaired biliary cholesterol secretion, without concomitant changes in either biliary bile acid or phospholipid secretion. Hepatic total and unesterified cholesterol contents were slightly increased in SR-BI-deficient mice, while sterol synthesis was not significantly changed, Bile acid pool size and composition, as well as fecal bile acid excretion, were not altered in SR-BI knockout mice. Intestinal cholesterol absorption was somewhat increased and fecal sterol excretion was slightly decreased in SR-BI knockout mice relative to controls. These findings establish the critical role of hepatic SR-BI expression in selectively controlling the utilization of HDL cholesterol for biliary secretion. In contrast, SR-BI expression is not essential for intestinal cholesterol absorption.
- ItemInfluence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology(NATL ACAD SCIENCES, 1999) Trigatti, B; Rayburn, H; Vinals, M; Braun, A; Miettinen, H; Penman, M; Hertz, M; Schrenzel, M; Amigo, L; Rigotti, A; Krieger, MThe high density lipoprotein (HDL) receptor SR-BI (scavenger receptor class B type I) mediates the selective uptake of plasma HDL cholesterol by the liver and steroidogenic tissues. As a consequence, SR-BI can influence plasma HDL cholesterol levels, HDL structure, biliary cholesterol concentrations, and the uptake, storage, and utilization of cholesterol by steroid hormone-producing cells. Here we used homozygous null SR-BI knockout mice to show that SR-BI is required for maintaining normal biliary cholesterol levels, oocyte development, and female fertility. We also used SR-BI/apolipoprotein E double homozygous knockout mice to show that SR-BI can protect against early-onset atherosclerosis. Although the mechanisms underlying the effects of SR-BI loss on reproduction and atherosclerosis have not been established, potential causes include changes in (i) plasma lipoprotein levels and/or structure, (ii) cholesterol flux into or out of peripheral tissues (ovary, aortic wall), and (iii) reverse cholesterol transport, as indicated by the significant reduction of gallbladder bile cholesterol levels in SR-BI and SR-BI/apolipoprotein E double knockout mice relative to controls. If SR-BI has similar activities in humans, it may become an attractive target for therapeutic intervention in a variety of diseases.
- ItemTargeted disruption of the PDZK1 gene in mice causes tissue-specific depletion of the high density lipoprotein receptor scavenger receptor class B type I and altered lipoprotein metabolism(AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2003) Kocher, O; Yesilaltay, A; Cirovic, C; Pal, R; Rigotti, A; Krieger, MPDZK1, a multi-PDZ domain containing adaptor protein, interacts with various membrane proteins, including the high density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI). Here we show that PDZK1 controls in a tissue-specific and post-transcriptional fashion the expression of SR-BI in vivo. SR-BI protein expression in PDZK1 knock-out (KO) mice was reduced by 95% in the liver, 50% in the proximal intestine, and not affected in steroidogenic organs (adrenal, ovary, and testis). Thus, PDZK1 joins a growing list of adaptors that control tissue-specific activity of cell surface receptors. Hepatic expression of SR-BII, a minor splice variant with an alternative C-terminal cytoplasmic domain, was not affected in PDZK1 KO mice, suggesting that binding of PDZK1 to SR-BI is required for controlling hepatic SR-BI expression. The loss of hepatic SR-BI was the likely cause of the elevation in plasma total and HDL cholesterol and the increase in HDL particle size in PDZK1 KO mice, phenotypes similar to those observed in SR-BI KO mice. PDZK1 KO mice differed from SR-BI KO mice in that the ratio of unesterified to total plasma cholesterol was normal, females were fertile, and cholesteryl ester stores in steroidogenic organs were essentially unaffected. These differences may be due to nearly normal extrahepatic expression of SR-BI in PDZK1 KO mice. The PDZK1-dependent regulation of hepatic SR-BI and, thus, lipoprotein metabolism supports the proposal that this adaptor may represent a new target for therapeutic intervention in cardiovascular disease.