Browsing by Author "Ledoux, C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemDirectly constraining the spatial coherence of the z ∼ 1 circumgalactic medium(2023) Afruni, A.; Lopez, S.; Anshul, P.; Tejos, N.; Noterdaeme, P.; Berg, T. A. M.; Ledoux, C.; Solimano, M.; Gonzalez-Lopez, J.; Gronke, M.; Barrientos Parra, Luis Felipe; Johnston, E. J.One of the biggest puzzles regarding the circumgalactic medium (CGM) is the structure of its cool (T ∼ 104 K) gas phase. While the kinematics of quasar absorption systems suggests the CGM is composed of a population of different clouds, constraining their extent and spatial distribution has proven challenging, both from theoretical and observational points of view. In this work, we study the spatial structure of the z ∼ 1 CGM with unprecedented detail via resolved spectroscopy of giant gravitational arcs. We put together a sample of Mg IIλλ2796, 2803 detections obtained with VLT/MUSE in 91 spatially independent and contiguous sight lines toward 3 arcs, each probing an isolated star-forming galaxy believed to be detected in absorption. We constrain the coherence scale of this gas (Clength) - which represents the spatial scale over which the Mg II equivalent width (EW) remains constant - by comparing EW variations measured across all sight lines with empirical models. We find 1.4 < Clength/kpc < 7.8 (95% confidence). This measurement, of unprecedented accuracy, represents the scale over which the cool gas tends to cluster in separate structures. We argue that, if Clength is a universal property of the CGM, it needs to be reproduced by current and future theoretical models in order for us to understand the exact role of this medium in galaxy evolution....
- ItemTelltale signs of metal recycling in the circumgalactic medium of a z 0.77 galaxy(2021) Tejos, N.; López, S.; Ledoux, C.; Fernández-Figueroa, A.; Rivas, N.; Sharon, K.; Johnston, E. J.; Florian, M. K.; D'Ago, G.; Katsianis, A.; Barrientos, F.; Berg, T.; Corro-Guerra, F.; Hamel, M.; Moya-Sierralta, C.; Poudel, S.; Rigby, J. R.; Solimano, M.We present gravitational-arc tomography of the cool-warm enriched circumgalactic medium (CGM) of an isolated galaxy ('G1') at z approximate to 0.77. Combining VLT/MUSE adaptive-optics and Magellan/MagE echelle spectroscopy, we obtain partially resolved kinematics of Mg II in absorption and [O II] in emission. The unique arc configuration allows us to probe 42 spatially independent arc positions transverse to G1, plus four positions in front of it. The transverse positions cover G1's minor and major axes at impact parameters of approximate to 10-30 and approximate to 60kpc, respectively. We observe a direct kinematic connection between the cool-warm enriched CGM (traced by Mg II) and the interstellar medium (traced by [O II]). This provides strong evidence for the existence of an extended disc that co-rotates with the galaxy out to tens of kiloparsecs. The Mg II velocity dispersion (sigma approximate to 30-100 km s(-1), depending on position) is of the same order as the modelled galaxy rotational velocity (v(rot) approximate to 80 km s(-1)), providing evidence for the presence of a turbulent and pressure-supported CGM component. We regard the absorption to be modulated by a galactic-scale outflow, as it offers a natural scenario for the observed line-of-sight dispersion and asymmetric profiles observed against both the arcs and the galaxy. An extended enriched co-rotating disc together with the signatures of a galactic outflow, are telltale signs of metal recycling in the z similar to 1 CGM.
- ItemThe warm, the excited, and the molecular gas: GRB 121024A shining through its star-forming galaxy(OXFORD UNIV PRESS, 2015) Friis, M.; De Cia, A.; Kruehler, T.; Fynbo, J. P. U.; Ledoux, C.; Vreeswijk, P. M.; Watson, D. J.; Malesani, D.; Gorosabel, J.; Starling, R. L. C.; Jakobsson, P.; Varela, K.; Wiersema, K.; Drachmann, A. P.; Trotter, A.; Thoene, C. C.; de Ugarte Postigo, A.; D'Elia, V.; Elliott, J.; Maturi, M.; Goldoni, P.; Greiner, J.; Haislip, J.; Kaper, L.; Knust, F.; LaCluyze, A.; Milvang Jensen, B.; Reichart, D.; Schulze, S.; Sudilovsky, V.; Tanvir, N.; Vergani, S. D.We present the first reported case of the simultaneous metallicity determination of a gamma- ray burst (GRB) host galaxy, from both afterglow absorption lines as well as strong emission- line diagnostics. Using spectroscopic and imaging observations of the afterglow and host of the long- duration Swift GRB 121024A at z = 2.30, we give one of the most complete views of a GRB host/ environment to date. We observe a strong damped Lya absorber (DLA) with a hydrogen column density of log N(H i) = 21.88 +/- 0.10, H-2 absorption in the Lyman- Werner bands (molecular fraction of log(f) approximate to- 1.4; fourth solid detection of molecular hydrogen in a GRB- DLA), the nebular emission lines H alpha, H beta, [OII], [O III] and [N II], as well as metal absorption lines. We find aGRB host galaxy that is highly star forming (SFR similar to 40M circle dot yr(-1)), with a dust- corrected metallicity along the line of sight of [Zn/ H](corr) =- 0.6 +/- 0.2 ([O/H]similar to- 0.3 from emission lines), and a depletion factor [Zn/ Fe] = 0.85 +/- 0.04. The molecular gas is separated by 400 km s(-1) (and 1-3 kpc) from the gas that is photoexcited by the GRB. This implies a fairly massive host, in agreement with the derived stellar mass of log(M*/M-circle dot) = 9.9(-0.3)(+0.2). We dissect the host galaxy by characterizing its molecular component, the excited gas, and the line- emitting star- forming regions. The extinction curve for the line of sight is found to be unusually flat (R-V similar to 15). We discuss the possibility of an anomalous grain size distributions. We furthermore discuss the different metallicity determinations from both absorption and emission lines, which gives consistent results for the line of sight to GRB 121024A.