Browsing by Author "Li, Junyao"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemHigh-quality Extragalactic Legacy-field Monitoring (HELM) with DECam: Project Overview and First Data Release(2024) Zhuang, Ming-Yang; Yang, Qian; Shen, Yue; Adamow, Monika; Friedel, Douglas N.; Gruendl, R. A.; Stone, Zachary; Li, Junyao; Liu, Xin; Martini, Paul; Abbott, Timothy M. C.; Anderson, Scott F.; Assef, Roberto J.; Bauer, Franz E.; Bielby, Richard; Brandt, W. N.; Burke, Colin J.; Casares, Jorge; Chen, Yu-Ching; De Rosa, Gisella; Drlica-Wagner, Alex; Dwelly, Tom; Eltvedt, Alice; Alvarez, Gloria Fonseca; Fu, Jianyang; Fuentes, Cesar; Graham, Melissa L.; Grier, Catherine J.; Golovich, Nathan; Hall, Patrick B.; Hartigan, Patrick; Horne, Keith; Koekemoer, Anton M.; Krumpe, Mirko; Li, Jennifer I.; Lidman, Chris; Malik, Umang; Mangian, Amelia; Merloni, Andrea; Ricci, Claudio; Salvato, Mara; Sharp, Rob; Trilling, David E.; Tucker, Brad E.; Wen, Di; Wideman, Zachary; Xue, Yongquan; Yu, Zhefu; Zucker, CatherineHigh-quality Extragalactic Legacy-field Monitoring (HELM) is a long-term observing program that photometrically monitors several well-studied extragalactic legacy fields with the Dark Energy Camera (DECam) imager on the CTIO 4 m Blanco telescope. Since 2019 February, HELM has been monitoring regions within COSMOS, XMM-LSS, CDF-S, S-CVZ, ELAIS-S1, and SDSS Stripe 82 with few-day cadences in the (u)gri(z) bands, over a collective sky area of similar to 38 deg2. The main science goal of HELM is to provide high-quality optical light curves for a large sample of active galactic nuclei (AGNs), and to build decades-long time baselines when combining past and future optical light curves in these legacy fields. These optical images and light curves will facilitate the measurements of AGN reverberation mapping lags, as well as studies of AGN variability and its dependencies on accretion properties. In addition, the time-resolved and coadded DECam photometry will enable a broad range of science applications from galaxy evolution to time-domain science. We describe the design and implementation of the program and present the first data release that includes source catalogs and the first similar to 3.5 yr of light curves during 2019A-2022A.
- ItemPiercing through Highly Obscured and Compton-thick AGNs in the Chandra Deep Fields. I. X-Ray Spectral and Long-term Variability Analyses(2019) Li, Junyao; Xue, Yongquan; Sun, Mouyuan; Liu, Teng; Vito, Fabio; Brandt, William N.; Hughes, Thomas M.; Yang, Guang; Tozzi, Paolo; Zhu, Shifu; Zheng, Xuechen; Luo, Bin; Chen, Chien-Ting; Vignali, Cristian; Gilli, Roberto; Shu, XinwenWe present a detailed X-ray spectral analysis of 1152 active galactic nuclei (AGNs) selected in the Chandra Deep Fields (CDFs), in order to identify highly obscured AGNs (N-H > 10(23) cm(-2)). By fitting spectra with physical models, 436 (38%) sources with L-X > 10(42) erg s(-1) are confirmed to be highly obscured, including 102 Compton-thick (CT) candidates. We propose a new hardness ratio measure of the obscuration level that can be used to select highly obscured AGN candidates. The completeness and accuracy of applying this method to our AGNs are 88% and 80%, respectively. The observed log N-log S relation favors cosmic X-ray background models that predict moderate (i.e., between optimistic and pessimistic) CT number counts. Nineteen percent (6/31) of our highly obscured AGNs that have optical classifications are labeled as broad-line AGNs, suggesting that, at least for part of the AGN population, the heavy X-ray obscuration is largely a line-of-sight effect, i.e., some high column density clouds on various scales (but not necessarily a dust-enshrouded torus) along our sight line may obscure the compact X-ray emitter. After correcting for several observational biases, we obtain the intrinsic N-H distribution and its evolution. The CT/highly obscured fraction is roughly 52% and is consistent with no evident redshift evolution. We also perform long-term (approximate to 7 yr in the observed frame) variability analyses for 31 sources with the largest number of counts available. Among them, 17 sources show flux variabilities: 31% (5/17) are caused by the change of N-H, 53% (9/17) are caused by the intrinsic luminosity variability, 6% (1/17) are driven by both effects, and 2 are not classified owing to large spectral fitting errors.
- ItemPiercing through Highly Obscured and Compton-thick AGNs in the Chandra Deep Fields. II. Are Highly Obscured AGNs the Missing Link in the Merger-triggered AGN-Galaxy Coevolution Models?(2020) Li, Junyao; Xue, Yongquan; Sun, Mouyuan; Brandt, William N.; Yang, Guang; Vito, Fabio; Tozzi, Paolo; Vignali, Cristian; Comastri, Andrea; Shu, Xinwen; Fang, Guanwen; Fan, Lulu; Luo, Bin; Chen, Chien-Ting; Zheng, XuechenBy using a large, highly obscured ( N-H > 10(23) cm(-2)) active galactic nucleus (AGN) sample (294 sources at z similar to 0-5) selected from detailed X-ray spectral analyses in the deepest Chandra.surveys, we explore distributions of these X-ray sources in various optical/infrared/X-ray color-color diagrams and their host-galaxy properties, aiming at characterizing the nuclear obscuration environment and the triggering mechanism of highly obscured AGNs. We find that the refined Infrared Array Camera (IRAC) color-color diagram fails to identify the majority of X-ray-selected, highly obscured AGNs, even for the most luminous sources with log L-X(erg s(-1)) > 44. Over 80% of our sources will not be selected as heavily obscured candidates using the flux ratio of f(24 mu m)/f(R) > 1000 and R - K > 4.5 criteria, implying complex origins and conditions for the obscuring materials that are responsible for the heavy X-ray obscuration. The average star formation rate (SFR) of highly obscured AGNs is similar to that of stellar mass-(M*-) and z-controlled normal galaxies, while a lack of quiescent hosts is observed for the former. Partial correlation analyses imply that highly obscured AGN activity (traced by L-X) appears to be more fundamentally related to M*, and no dependence of N-H on either M* or SFR is detected. Morphology analyses reveal that 61% of our sources have a significant disk component, while only similar to 27% of them exhibit irregular morphological signatures. These findings together point toward a scenario where secular processes (e.g., galacticdisk instabilities), instead of mergers, are most probable to be the leading mechanism that triggers accretion activities of X-ray-selected, highly obscured AGNs.