Browsing by Author "Limousin, Marceau"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDissecting the Strong-lensing Galaxy Cluster MS 0440.5+0204. I. The Mass Density Profile(2020) Verdugo, Tomas; Carrasco, Eleazar R.; Foex, Gael; Motta, Veronica; Gomez, Percy L.; Limousin, Marceau; Magana, Juan; de Diego, Jose A.We present a parametric strong-lensing modeling of the galaxy cluster MS 0440.5+0204 (located at z = 0.19). We have performed a strong-lensing mass reconstruction of the cluster using three different models. The first model uses the image positions of four multiply imaged systems (providing 26 constraints). The second one combines strong-lensing constraints with dynamical information (velocity dispersion) of the cluster. The third one uses the mass calculated from weak lensing as an additional constraint. Our three models reproduce equally well the image positions of the arcs, with an rms image equal to approximate to 0.'' 5 However, in the third model, the inclusion of the velocity dispersion and the weak-lensing mass allows us to obtain better constraints in the scale radius and the line-of-sight velocity dispersion of the mass profile. For this model, we obtain r(s), = 132(-32)(+30) kpc, sigma(s) = 1203(-47)(+46) km s(-1), M-200 = 3.1(-0.6)(+0.6) x10(14) M-circle dot, and a high concentration c(200) = 9.9(-1.4)(+2.2). Finally, we used our derived mass profile to calculate the mass up to 1.5 Mpc. We compare it with X-ray estimates previously reported, finding a good agreement.
- ItemPilot-WINGS: An extended MUSE view of the structure of Abell 370(2022) Lagattuta, David J.; Richard, Johan; Bauer, Franz Erik; Cerny, Catherine; Claeyssens, Adelaide; Guaita, Lucia; Jauzac, Mathilde; Jeanneau, Alexandre; Koekemoer, Anton M.; Mahler, Guillaume; Prieto Lyon, Gonzalo; Acebron, Ana; Meneghetti, Massimo; Niemiec, Anna; Zitrin, Adi; Bianconi, Matteo; Connor, Thomas; Cen, Renyue; Edge, Alastair; Faisst, Andreas L.; Limousin, Marceau; Massey, Richard; Sereno, Mauro; Sharon, Keren; Weaver, John R.We investigate the strong-lensing cluster Abell 370 (A370) using a wide Integral Field Unit (IFU) spectroscopic mosaic from the Multi-Unit Spectroscopic Explorer (MUSE). IFU spectroscopy provides significant insight into the structure and mass content of galaxy clusters, yet IFU-based cluster studies focus almost exclusively on the central Einstein-radius region. Covering over 14 arcmin(2), the new MUSE mosaic extends significantly beyond the A370 Einstein radius, providing, for the first time, a detailed look at the cluster outskirts. Combining these data with wide-field, multi-band Hubble Space Telescope (HST) imaging from the BUFFALO project, we analyse the distribution of objects within the cluster and along the line of sight. Identifying 416 cluster galaxies, we use kinematics to trace the radial mass profile of the halo, providing a mass estimate independent from the lens model. We also measure radially averaged properties of the cluster members, tracking their evolution as a function of infall. Thanks to the high spatial resolution of our data, we identify six cluster members acting as galaxy-galaxy lenses, which constrain localized mass distributions beyond the Einstein radius. Finally, taking advantage of MUSE's 3D capabilities, we detect and analyse multiple spatially extended overdensities outside of the cluster that influence lensing-derived halo mass estimates. We stress that much of this work is only possible thanks to the robust, extended IFU coverage, highlighting its importance even in less optically dense cluster regions. Overall, this work showcases the power of combining HST + MUSE, and serves as the initial step towards a larger and wider program targeting several clusters.