Browsing by Author "Margon, B"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemA large, uniform sample of X-ray-emitting AGNs(2003) Anderson, SF; Voges, W; Margon, B; Trümper, J; Agüeros, MA; Boller, T; Collinge, MJ; Homer, L; Stinson, G; Strauss, MA; Annis, J; Gómez, P; Hall, PB; Nichol, RC; Richards, GT; Schneider, DP; Vanden Berk, DE; Fan, XH; Ivezic, Z; Munn, JA; Newberg, HJ; Richmond, MW; Weinberg, DH; Yanny, B; Bahcall, NA; Brinkmann, J; Fukugita, M; York, DGMany open questions in X-ray astronomy are limited by the relatively small number of objects in uniform optically identified and observed samples, especially when rare subclasses are considered or when subsets are isolated to search for evolution or correlations between wavebands. We describe the initial results of a new program aimed to ultimately yield similar to10(4) fully characterized X-ray source identifications-a sample about an order of magnitude larger than earlier efforts. The technique is detailed and employs X-ray data from the ROSAT All-Sky Survey (RASS) and optical imaging and spectroscopic follow-up from the Sloan Digital Sky Survey (SDSS); these two surveys prove to be serendipitously very well matched in sensitivity. As part of the SDSS software pipelines, optical objects in the SDSS photometric catalogs are automatically positionally cross-correlated with RASS X-ray sources. Then priorities for follow-on SDSS optical spectra of candidate counterparts are automatically assigned using an algorithm based on the known ratios of f(x)/f(opt) for various classes of X-ray emitters at typical RASS fluxes of similar to10(-13) ergs cm(-2) s(-1). SDSS photometric parameters for optical morphology, magnitude, and colors, plus FIRST radio information, serve as proxies for object class. Initial application of this approach to RASS/SDSS data from 1400 deg(2) of sky provides a catalog of more than 1200 spectroscopically confirmed quasars and other AGNs that are probable RASS identifications. Most of these are new identifications, and only a few percent of the AGN counterparts are likely to be random superpositions. The magnitude and redshift ranges of the counterparts are very broad, extending over 15
- ItemAn initial survey of white dwarfs in the Sloan Digital Sky Survey(2003) Harris, HC; Liebert, J; Kleinman, SJ; Nitta, A; Anderson, SF; Knapp, GR; Krzesinski, J; Schmidt, G; Strauss, MA; Berk, DV; Eisenstein, D; Hawley, S; Margon, B; Munn, JA; Silvestri, NM; Smith, JA; Szkody, P; Collinge, MJ; Dahn, CC; Fan, XH; Hall, PB; Schneider, DP; Brinkmann, J; Burles, S; Gunn, JE; Hennessy, GS; Hindsley, R; Ivezic, Z; Kent, S; Lamb, DQ; Lupton, RH; Nichol, RC; Pier, JR; Schlegel, DJ; SubbaRao, M; Uomoto, A; Yanny, B; York, DGAn initial assessment is made of white dwarf and hot subdwarf stars observed in the Sloan Digital Sky Survey. In a small area of sky ( 190 square degrees), observed much like the full survey will be, 269 white dwarfs (WDs) and 56 hot subdwarfs are identified spectroscopically where only 44 white dwarfs and five hot subdwarfs were known previously. Most are ordinary DA ( hydrogen atmosphere) and DB ( helium) types. In addition, in the full survey to date, a number of WDs have been found with uncommon spectral types. Among these are blue DQ stars displaying lines of atomic carbon; red DQ stars showing molecular bands of C-2 with a wide variety of strengths; DZ stars where Ca and occasionally Mg, Na, and/or Fe lines are detected; and magnetic WDs with a wide range of magnetic field strengths in DA, DB, DQ, and ( probably) DZ spectral types. Photometry alone allows identification of stars hotter than 12,000 K, and the density of these stars for 15 < g < 20 is found to be similar to2.2 deg(-2) at Galactic latitudes of 29degrees - 62degrees. Spectra are obtained for roughly half of these hot stars. The spectra show that for 15 < g < 17, 40% of hot stars are WDs, and the fraction of WDs rises to similar to90% at g = 20. The remainder are hot sdB and sdO stars.
- ItemFaint high-latitude carbon stars discovered by the Sloan Digital Sky Survey: Methods and initial results(2002) Margon, B; Anderson, SF; Harris, HC; Strauss, MA; Knapp, GR; Fan, XH; Schneider, DP; Berk, DEV; Schlegel, DJ; Deutsch, EW; Ivezic, Z; Hall, PB; Williams, BF; Davidsen, AF; Brinkmann, J; Csabai, I; Hayes, JJE; Hennessy, G; Kinney, EK; Kleinman, SJ; Lamb, DQ; Long, D; Neilsen, EH; Nichol, R; Nitta, A; Snedden, SA; York, DGWe report the discovery of 39 faint high-latitude carbon stars (FHLCs) from Sloan Digital Sky Survey (SDSS) commissioning data. The objects, each selected photometrically and verified spectroscopically, range over 16.6 < r* < 20.0 and show a diversity of temperatures as judged by both colors and NaD line strengths. Although a handful of these stars were previously known, these objects are, in general, too faint and too warm to be effectively identified in other modern surveys such as the Two Micron All Sky Survey, nor are their red/near-IR colors particularly distinctive. The implied surface density of FHLCs in this magnitude range is uncertain at this preliminary stage of the survey because of completeness corrections but is clearly greater than 0.05 deg(-2). At the completion of the Sloan survey, there will be many hundred homogeneously selected and observed FHLCs in this sample. We present proper-motion measures for each object, indicating that the sample is a mixture of extremely distant (greater than 100 kpc) halo giant stars, useful for constraining halo dynamics, and members of the recently recognized exotic class of very nearby dwarf carbon (dC) stars. The broadband colors of the two populations are indistinguishable. Motions, and thus dC classification, are inferred for 40%-50% of the sample, depending on the level of statistical significance invoked. The new list of dC stars presented here, although selected from only a small fraction of the final SDSS, doubles the number of such objects found by all previous methods. The observed kinematics suggest that the dwarfs occupy distinct halo and disk populations. The coolest FHLCs with detectable proper motions in our sample also display multiple CaH bands in their spectra. It may be that CaH is another long-sought, low-resolution, spectroscopic luminosity discriminant between dC's and distant faint giants, at least for the cooler stars.
- ItemSDSS white dwarfs with spectra showing atomic oxygen and/or carbon lines(2003) Liebert, J; Harris, HC; Dahn, CC; Schmidt, GD; Kleinman, SJ; Nitta, A; Krzesinski, J; Eisenstein, D; Smith, JA; Szkody, P; Hawley, S; Anderson, SF; Brinkmann, J; Collinge, MJ; Fan, XH; Hall, PB; Knapp, GR; Lamb, DQ; Margon, B; Schneider, DP; Silvestri, NWe discuss 18 white dwarfs, one of which (G227-5) was previously known, whose SDSS spectra show lines of neutral and/or singly ionized carbon. At least two and perhaps four show lines of neutral or singly ionized oxygen. Apart from the extremely hot "PG 1159'' stars, these are the first white dwarfs with photospheric oxygen detected in their optical spectra. The photometry strongly suggests that these stars lie in the 11,000-30,000 K temperature range of the helium-atmosphere DB white dwarfs, though only one of them shows weak neutral helium lines in the spectrum. Trigonometric parallaxes are known for G227-5 and another, previously known white dwarf (G35-26) showing atomic carbon lines, and they indicate that both are massive stars. Theoretical arguments suggest that all members of this class of rare white dwarfs are massive (similar to1 M.), and this finding could explain the paucity of massive DB white dwarfs.
- ItemSloan Digital Sky Survey(2002) Stoughton, C; Lupton, RH; Bernardi, M; Blanton, MR; Burles, S; Castander, FJ; Connolly, AJ; Eisenstein, DJ; Frieman, JA; Hennessy, GS; Hindsley, RB; Ivezic, Z; Kent, S; Kunszt, PZ; Lee, BC; Meiksin, A; Munn, JA; Newberg, HJ; Nichol, RC; Nicinski, T; Pier, JR; Richards, GT; Richmond, MW; Schlegel, DJ; Smith, JA; Strauss, MA; SubbaRao, M; Szalay, AS; Thakar, AR; Tucker, DL; Vanden Berk, DE; Yanny, B; Adelman, JK; Anderson, JE; Anderson, SF; Annis, J; Bahcall, NA; Bakken, JA; Bartelmann, M; Bastian, S; Bauer, A; Berman, E; Böhringer, H; Boroski, WN; Bracker, S; Briegel, C; Briggs, JW; Brinkmann, J; Brunner, R; Carey, L; Carr, MA; Chen, B; Christian, D; Colestock, PL; Crocker, JH; Csabai, IN; Czarapata, PC; Dalcanton, J; Davidsen, AF; Davis, JE; Dehnen, W; Dodelson, S; Doi, M; Dombeck, T; Donahue, M; Ellman, N; Elms, BR; Evans, ML; Eyer, L; Fan, XH; Federwitz, GR; Friedman, S; Fukugita, M; Gal, R; Gillespie, B; Glazebrook, K; Gray, J; Grebel, EK; Greenawalt, B; Greene, G; Gunn, JE; de Haas, E; Haiman, Z; Haldeman, M; Hall, PB; Hamabe, M; Hansen, B; Harris, FH; Harris, H; Harvanek, M; Hawley, SL; Hayes, JJE; Heckman, TM; Helmi, A; Henden, A; Hogan, CJ; Hogg, DW; Holmgren, DJ; Holtzman, J; Huang, CH; Hull, C; Ichikawa, SI; Ichikawa, T; Johnston, DE; Kauffmann, G; Kim, RSJ; Kimball, T; Kinney, E; Klaene, M; Kleinman, SJ; Klypin, A; Knapp, GR; Korienek, J; Krolik, J; Kron, RG; Krzesinski, J; Lamb, DQ; Leger, RF; Limmongkol, S; Lindenmeyer, C; Long, DC; Loomis, C; Loveday, J; MacKinnon, B; Mannery, EJ; Mantsch, PM; Margon, B; McG'hee, P; Mckay, TA; McLean, B; Menou, K; Merelli, A; Mo, HJ; Monet, DG; Nakamura, O; Narayanan, VK; Nash, T; Neilsen, EH; Newman, PR; Nitta, A; Odenkirchen, M; Okada, N; Okamura, S; Ostriker, JP; Owen, R; Pauls, AG; Peoples, J; Peterson, RS; Petravick, D; Pope, A; Pordes, R; Postman, M; Prosapio, A; Quinn, TR; Rechenmacher, R; Rivetta, CH; Rix, HW; Rockosi, CM; Rosner, R; Ruthmansdorfer, K; Sandford, D; Schneider, DP; Scranton, R; Sekiguchi, M; Sergey, G; Sheth, R; Shimasaku, K; Smee, S; Snedden, SA; Stebbins, A; Stubbs, C; Szapudi, I; Szkody, P; Szokoly, GP; Tabachnik, S; Tsvetanov, Z; Uomoto, A; Vogeley, MS; Voges, W; Waddell, P; Walterbos, R; Wang, SI; Watanabe, M; Weinberg, DH; White, RL; White, SDM; Wilhite, B; Wolfe, D; Yasuda, N; York, DG; Zehavi, I; Zheng, WThe Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey that will eventually cover approximately one-quarter of the celestial sphere and collect spectra of 10 6 galaxies, 100,000 quasars, 30,000 stars, and 30,000 serendipity targets. In 2001 June, the SDSS released to the general astronomical community its early data release, roughly 462 deg(2) of imaging data including almost 14 million detected objects and 54,008 follow-up spectra. The imaging data were collected in drift-scan mode in five bandpasses (u, g, r, i, and z); our 95% completeness limits for stars are 22.0, 22.2, 22.2, 21.3, and 20.5, respectively. The photometric calibration is reproducible to 5%, 3%, 3%, 3%, and 5%, respectively. The spectra are flux- and wavelength-calibrated, with 4096 pixels from 3800 to 9200 Angstrom at R approximate to 1800. We present the means by which these data are distributed to the astronomical community, descriptions of the hardware used to obtain the data, the software used for processing the data, the measured quantities for each observed object, and an overview of the properties of this data set.
- ItemThe first data release of the Sloan Digital Sky Survey(2003) Abazajian, K; Adelman-McCarthy, JK; Agüeros, MA; Allam, SS; Anderson, SF; Annis, J; Bahcall, NA; Baldry, IK; Bastian, S; Berlind, A; Bernardi, M; Blanton, MR; Blythe, N; Bochanski, JJ; Boroski, WN; Brewington, H; Briggs, JW; Brinkmann, J; Brunner, RJ; Budavári, T; Carey, LN; Carr, MA; Castander, FJ; Chiu, K; Collinge, MJ; Connolly, AJ; Covey, KR; Csabai, I; Dalcanton, JJ; Dodelson, S; Doi, M; Dong, F; Eisenstein, DJ; Evans, ML; Fan, XH; Feldman, PD; Finkbeiner, DP; Friedman, SD; Frieman, JA; Fukugita, M; Gal, RR; Gillespie, B; Glazebrook, K; Gonzalez, CF; Gray, J; Grebel, EK; Grodnicki, L; Gunn, JE; Gurbani, VK; Hall, PB; Hao, L; Harbeck, D; Harris, FH; Harris, HC; Harvanek, M; Hawley, SL; Heckman, TM; Helmboldt, JF; Hendry, JS; Hennessy, GS; Hindsley, RB; Hogg, DW; Holmgren, DJ; Holtzman, JA; Homer, L; Hui, L; Ichikawa, SI; Ichikawa, T; Inkmann, JP; Ivezic, Z; Jester, S; Johnston, DE; Jordan, B; Jordan, WP; Jorgensen, AM; Juric, M; Kauffmann, G; Kent, SM; Kleinman, SJ; Knapp, GR; Kniazev, AY; Kron, RG; Krzesinski, J; Kunszt, PZ; Kuropatkin, N; Lamb, DQ; Lampeitl, H; Laubscher, BE; Lee, BC; Leger, RF; Li, N; Lidz, A; Lin, H; Loh, YS; Long, DC; Loveday, J; Lupton, RH; Malik, T; Margon, B; McGehee, PM; McKay, TA; Meiksin, A; Miknaitis, GA; Moorthy, BK; Munn, JA; Murphy, T; Nakajima, R; Narayanan, VK; Nash, T; Neilsen, EH; Newberg, HJ; Newman, PR; Nichol, RC; Nicinski, T; Nieto-Santisteban, M; Nitta, A; Odenkirchen, M; Okamura, S; Ostriker, JP; Owen, R; Padmanabhan, N; Peoples, J; Pier, JR; Pindor, B; Pope, AC; Quinn, TR; Rafikov, RR; Raymond, SN; Richards, GT; Richmond, MW; Rix, HW; Rockosi, CM; Schaye, J; Schlegel, DJ; Schneider, DP; Schroeder, J; Scranton, R; Sekiguchi, M; Seljak, U; Sergey, G; Sesar, B; Sheldon, E; Shimasaku, K; Siegmund, WA; Silvestri, NM; Sinisgalli, AJ; Sirko, E; Smith, JA; Smolcic, V; Snedden, SA; Stebbins, A; Steinhardt, C; Stinson, G; Stoughton, C; Strateva, IV; Strauss, MA; Subbarao, M; Szalay, AS; Szapudi, I; Szkody, P; Tasca, L; Tegmark, M; Thakar, AR; Tremonti, C; Tucker, DL; Uomoto, A; Vanden Berk, DE; Vandenberg, J; Vogeley, MS; Voges, W; Vogt, NP; Walkowicz, LM; Weinberg, DH; West, AA; White, SDM; Wilhite, BC; Willman, B; Xu, YZ; Yanny, B; Yarger, J; Yasuda, N; Yip, CW; Yocum, DR; York, DG; Zakamska, NL; Zehavi, I; Zheng, W; Zibetti, S; Zucker, DBThe Sloan Digital Sky Survey (SDSS) has validated and made publicly available its First Data Release. This consists of 2099 deg(2) of five-band (u, g, r, i, z) imaging data, 186,240 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 1360 deg(2) of this area, and tables of measured parameters from these data. The imaging data go to a depth of r approximate to 22.6 and are photometrically and astrometrically calibrated to 2% rms and 100 mas rms per coordinate, respectively. The spectra cover the range 3800-9200 Angstrom, with a resolution of 1800-2100. This paper describes the characteristics of the data with emphasis on improvements since the release of commissioning data (the SDSS Early Data Release) and serves as a pointer to extensive published and on-line documentation of the survey.
- ItemThe Sloan Digital Sky Survey Quasar Catalog. I. Early data release(2002) Schneider, DP; Richards, GT; Fan, XH; Hall, PB; Strauss, MA; Vanden Berk, DE; Gunn, JE; Newberg, HJ; Reichard, TA; Stoughton, C; Voges, W; Yanny, B; Anderson, SF; Annis, J; Bahcall, NA; Bauer, A; Bernardi, M; Blanton, MR; Boroski, WN; Brinkmann, J; Briggs, JW; Brunner, R; Burles, S; Carey, L; Castander, FJ; Connolly, AJ; Csabai, I; Doi, M; Friedman, S; Frieman, JA; Fukugita, M; Heckman, TM; Hennessy, GS; Hindsley, RB; Hogg, DW; Ivezic, Z; Kent, S; Knapp, GR; Kunzst, PZ; Lamb, DQ; Leger, RF; Long, DC; Loveday, J; Lupton, RH; Margon, B; Meiksin, A; Merelli, A; Munn, JA; Newcomb, M; Nichol, RC; Owen, R; Pier, JR; Pope, A; Rockosi, CM; Saxe, DH; Schlegel, D; Siegmund, WA; Smee, S; Snir, Y; SubbaRao, M; Szalay, AS; Thakar, AR; Uomoto, A; Waddell, P; York, DGWe present the first edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 3814 objects ( 3000 discovered by the SDSS) in the initial SDSS public data release that have at least one emission line with a full width at half-maximum larger than 1000 km s(-1), luminosities brighter than M(i*) = -23, and highly reliable redshifts. The area covered by the catalog is 494 deg(2); the majority of the objects were found in SDSS commissioning data using a multicolor selection technique. The quasar redshifts range from 0.15 to 5.03. For each object the catalog presents positions accurate to better than 0".2 rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.05 mag, radio and X-ray emission properties, and information on the morphology and selection method. Calibrated spectra of all objects in the catalog, covering the wavelength region 3800-9200 Angstrom at a spectral resolution of 1800-2100, are also available. Since the quasars were selected during the commissioning period, a time when the quasar selection algorithm was undergoing frequent revisions, the sample is not homogeneous and is not intended for statistical analysis.
- ItemThe Sloan Digital Sky Survey Quasar Catalog. II. First data release(2003) Schneider, DP; Fan, XH; Hall, PB; Jester, S; Richards, GT; Stoughton, C; Strauss, MA; SubbaRao, M; Vanden Berk, DE; Anderson, SF; Brandt, WN; Gunn, JE; Gray, J; Trump, JR; Voges, W; Yanny, B; Bahcall, NA; Blanton, MR; Boroski, WN; Brinkmann, J; Brunner, R; Burles, S; Castander, FJ; Doi, M; Eisenstein, D; Frieman, JA; Fukugita, M; Heckman, TM; Hennessy, GS; Ivezic, Z; Kent, S; Knapp, GR; Lamb, DQ; Lee, BC; Loveday, J; Lupton, RH; Margon, B; Meiksin, A; Munn, JA; Newberg, HJ; Nichol, RC; Niederste-Ostholt, M; Pier, JR; Richmond, MW; Rockosi, CM; Saxe, DH; Schlegel, DJ; Szalay, AS; Thakar, AR; Uomoto, A; York, DGWe present the second edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 16,713 objects in the SDSS First Data Release that have luminosities larger than M-i=-22 (in a cosmology with H-0=70 km s(-1) Mpc(-1), Omega(M)=0.3, and Omega(Lambda)=0.7), have at least one emission line with FWHM larger than 1000 km s(-1), and have highly reliable redshifts. The area covered by the catalog is approximate to1360 deg(2). The quasar redshifts range from 0.08 to 5.41, with a median value of 1.43. For each object, the catalog presents positions accurate to better than 0."2 rms per coordinate, five- band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains some radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. Calibrated digital spectra of all objects in the catalog, covering the wavelength region 3800-9200 Angstrom at a spectral resolution of 1800-2100, are available. This publication supersedes the first SDSS Quasar Catalog, which was based on material from the SDSS Early Data Release. A summary of corrections to current quasar databases is also provided. The majority of the objects were found in SDSS commissioning data using a multicolor selection technique. Since the quasar selection algorithm was undergoing testing during the entire observational period covered by this catalog, care must be taken when assembling samples from the catalog for use in statistical studies. A total of 15,786 objects (94%) in the catalog were discovered by the SDSS; 12,173 of the SDSS discoveries are reported here for the first time. Included in the new discoveries are five quasars brighter than i=16.0 and 17 quasars with redshifts larger than 4.5.