Browsing by Author "Martinez, C. E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemPlatelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells(2016) Martinez, C. E.; González Bombardiere, Sergio; Palma, V.; Smith, P. C.Background: Plasma-derived fractions have been used as an autologous source of growth factors; however, limited knowledge concerning their biologic effects has hampered their clinical application. In this study, the authors analyze the content and specific effect of both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on osteoblastic differentiation using primary cultures of human periodontal ligament stem cells (HPLSCs). Methods: The authors evaluated the growth factor content of PRP and PPP using a proteome profiler array and enzyme-linked immunosorbent assay. HPLSCs were characterized by flow cytometry and differentiation assays. The effect of PRP and PPP on HPLSC bone differentiation was analyzed by quantifying calcium deposition after 14 and 21 days of treatment. Results: Albeit at different concentrations, the two fractions had similar profiles of growth factors, the most representative being platelet-derived growth factor (PDGF) isoforms (PDGF-AA, -BB, and -AB), insulin-like growth factor binding protein (IGFBP)-2, and IGFBP-6. Both formulations exerted a comparable stimulus on osteoblastic differentiation even at low doses (2.5%), increasing calcium deposits in HPLSCs. Conclusions: PRP and PPP showed a similar protein profile and exerted comparable effects on bone differentiation. Further studies are needed to characterize and compare the effects of PPP and PRP on bone healing in vivo.
- ItemThe influence of platelet-derived products on angiogenesis and tissue repair: a concise update(2015) Martinez, C. E.; Smith, P. C.; Alvarado, V. A. P.Platelet degranulation allows the release of a large amount of soluble mediators, is an essential step for wound healing initiation, and stimulates clotting, and angiogenesis. The latter process is one of the most critical biological events observed during tissue repair, increasing the growth of blood vessels in the maturing wound. Angiogenesis requires the action of a variety of growth factors that act in an appropriate physiological ratio to assure functional blood vessel restoration. Platelets release main regulators of angiogenesis: Vascular Endothelial Growth Factors (VEGFs), basic fibroblast growth factor (FGF-2), and Platelet derived growth factors (PDGFs), among others. In order to stimulate tissue repair, platelet derived fractions have been used as an autologous source of growth factors and biomolecules, namely Platelet Rich Plasma (PRP), Platelet Poor Plasma (PPP), and Platelet Rich Fibrin (PRF). The continuous release of these growth factors has been proposed to promote angiogenesis both in vitro and in vivo. Considering the existence of clinical trials currently evaluating the efficacy of autologous PRP, the present review analyses fundamental questions regarding the putative role of platelet derived fractions as regulators of angiogenesis and evaluates the possible clinical implications of these formulations.