Browsing by Author "Masseron, T."
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ItemA Chemical and Kinematical Analysis of the Intermediate-age Open Cluster IC 166 from APOGEE and Gaia DR2(2018) Schiappacasse-Ulloa, J.; Tang, B.; Fernandez-Trincado, J. G.; Zamora, O.; Geisler, D.; Frinchaboy, P.; Schultheis, M.; Dell'Agli, F.; Villanova, S.; Masseron, T.; Meszaros, Sz; Souto, D.; Hasselquist, S.; Cunha, K.; Smith, V. V.; Garcia-Hernandez, D. A.; Vieira, K.; Robin, A. C.; Minniti, D.; Zasowski, G.; Moreno, E.; Perez-Villegas, A.; Lane, R. R.; Ivans, I. I.; Pan, K.; Nitschelm, C.; Santana, F. A.; Carrera, R.; Roman-Lopes, A.
- ItemA Perspective on the Milky Way Bulge Bar as Seen from the Neutron-capture Elements Cerium and Neodymium with APOGEE(2024) Sales-Silva, J. V.; Cunha, K.; Smith, V. V.; Daflon, S.; Souto, D.; Guerco, R.; Queiroz, A.; Chiappini, C.; Hayes, C. R.; Masseron, T.; Hasselquist, Sten; Horta, D.; Prantzos, N.; Zoccali, M.; Allende Prieto, C.; Barbuy, B.; Beaton, R.; Bizyaev, D.; Fernandez-Trincado, J. G.; Frinchaboy, P. M.; Holtzman, J. A.; Johnson, J. A.; Joensson, Henrik; Majewski, S. R.; Minniti, D.; Nidever, D. L.; Schiavon, R. P.; Schultheis, M.; Sobeck, J.; Stringfellow, G. S.; Zasowski, G.This study probes the chemical abundances of the neutron-capture elements cerium and neodymium in the inner Milky Way from an analysis of a sample of similar to 2000 stars in the Galactic bulge bar spatially contained within divided by X-Gal divided by < 5 kpc, divided by Y-Gal divided by < 3.5 kpc, and divided by Z(Gal)divided by < 1 kpc, and spanning metallicities between -2.0 less than or similar to [Fe/H] less than or similar to +0.5. We classify the sample stars into low- or high-[Mg/Fe] populations and find that, in general, values of [Ce/Fe] and [Nd/Fe] increase as the metallicity decreases for the low- and high-[Mg/Fe] populations. Ce abundances show a more complex variation across the metallicity range of our bulge-bar sample when compared to Nd, with the r-process dominating the production of neutron-capture elements in the high-[Mg/Fe] population ([Ce/Nd] < 0.0). We find a spatial chemical dependence of Ce and Nd abundances for our sample of bulge-bar stars, with low- and high-[Mg/Fe] populations displaying a distinct abundance distribution. In the region close to the center of the MW, the low-[Mg/Fe] population is dominated by stars with low [Ce/Fe], [Ce/Mg], [Nd/Mg], [Nd/Fe], and [Ce/Nd] ratios. The low [Ce/Nd] ratio indicates a significant contribution in this central region from r-process yields for the low-[Mg/Fe] population. The chemical pattern of the most metal-poor stars in our sample suggests an early chemical enrichment of the bulge dominated by yields from core-collapse supernovae and r-process astrophysical sites, such as magnetorotational supernovae.
- ItemAbundances of iron-peak elements in 58 bulge spheroid stars from APOGEE(EDP SCIENCES S A, 2024) Barbuy, B.; Friaca, A. C. S.; Ernandes, H.; da Silva, P.; Souza, S. O.; Fernandez-Trincado, J. G.; Cunha, K.; Smith, V. V.; Masseron, T.; Perez-Villegas, A.; Chiappini, C.; Queiroz, A. B. A.; Santiago, B. X.; Beers, T. C.; Anders, F.; Schiavon, R. P.; Valentini, M.; Minniti, D.; Geisler, D.; Souto, D.; Placco, V. M.; Zoccali, Manuela; Feltzing, S.; Schultheis, M.; Nitschelm, C.Context. Stars presently identified in the bulge spheroid are probably very old, and their abundances can be interpreted as due to the fast chemical enrichment of the early Galactic bulge. The abundances of the iron-peak elements are important tracers of nucleosynthesis processes, in particular oxygen burning, silicon burning, the weak s-process, and alpha-rich freeze-out. Aims. The aim of this work is to derive the abundances of V, Cr, Mn, Co, Ni, and Cu in 58 bulge spheroid stars and to compare them with the results of a previous analysis of data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Methods. We selected the best lines for V, Cr, Mn, Co, Ni, and Cu located within the H-band of the spectrum, identifying the most suitable ones for abundance determination, and discarding severe blends. Using the stellar physical parameters available for our sample from the DR17 release of the APOGEE project, we derived the individual abundances through spectrum synthesis. We then complemented these measurements with similar results from different bulge field and globular cluster stars, in order to define the trends of the individual elements and compare with the results of chemical-evolution models. Results. We verify that the H-band has useful lines for the derivation of the elements V, Cr, Mn, Co, Ni, and Cu in moderately metal-poor stars. The abundances, plotted together with others from high-resolution spectroscopy of bulge stars, indicate that: V, Cr, and Ni vary in lockstep with Fe; Co tends to vary in lockstep with Fe, but could be showing a slight decrease with decreasing metallicity; and Mn and Cu decrease with decreasing metallicity. These behaviours are well reproduced by chemical-evolution models that adopt literature yields, except for Cu, which appears to drop faster than the models predict for [Fe/H]<-0.8. Finally, abundance indicators combined with kinematical and dynamical criteria appear to show that our 58 sample stars are likely to have originated in situ.
- ItemAtypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns(2017) Fernández Trincado J.; Zamora, O.; García Hernández, D.; Souto, D.; Dell'Agli, F.; Schiavon, R.; Geisler, D.; Tang, B.; Villanova, S.; Chanamé, Julio; Hasselquist, S.; Mennickent, R.; Cunha, K.; Shetrone, M.; Prieto, C.; Vieira, K.; Zasowski, G.; Sobeck, J.; Hayes, C.; Majewski, S.; Placco, V.; Beers, T.; Schleicher, D.; Robin, A.; Mészáros, S.; Masseron, T.; Pérez, A.; Anders, F.; Meza, A.; Alves-Brito A.; Carrera, R.; Minniti, D.; Lane, R.; Fernández-Alvar E.; Moreno, E.; Pichardo, B.; Pérez-Villegas, A.; Schultheis, M.; Roman-Lopes, A.; Fuentes, C.; Nitschelm, C.; Harding, P.; Bizyaev, D.; Pan, K.; Oravetz, D.; Simmons, A.; Ivans, I.; Blanco-Cuaresma, S.; Hernández J.; Alonso-García, J.; Valenzuela, O.
- ItemH-band discovery of additional second-generation stars in the Galactic bulge globular cluster NGC 6522 as observed by APOGEE and Gaia(2019) Fernandez-Trincado, J. G.; Zamora, O.; Souto, Diogo; Cohen, R. E.; Agli, F. Dell; Garcia-Hernandez, D. A.; Masseron, T.; Schiavon, R. P.; Meszaros, Sz; Cunha, K.; Hasselquist, S.; Shetrone, M.; Schiappacasse Ulloa, J.; Tang, B.; Geisler, D.; Schleicher, D. R. G.; Villanova, S.; Mennickent, R. E.; Minniti, D.; Alonso-Garcia, J.; Manchado, A.; Beers, T. C.; Sobeck, J.; Zasowski, G.; Schultheis, M.; Majewski, S. R.; Rojas-Arriagada, A.; Almeida, A.; Santana, F.; Oelkers, R. J.; Longa-Pena, P.; Carrera, R.; Burgasser, A. J.; Lane, R. R.; Roman-Lopes, A.; Ivans, I. I.; Hearty, F. R.We present an elemental abundance analysis of high-resolution spectra for five giant stars spatially located within the innermost regions of the bulge globular cluster NGC 6522 and derive Fe, Mg, Al, C, N, O, Si, and Ce abundances based on H-band spectra taken with the multi-object APOGEE-north spectrograph from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Of the five cluster candidates, two previously unremarked stars are confirmed to have second-generation (SG) abundance patterns, with the basic pattern of depletion in C and Mg simultaneous with enrichment in N and Al as seen in other SG globular cluster populations at similar metallicity. In agreement with the most recent optical studies, the NGC 6522 stars analyzed exhibit (when available) only mild overabundances of the s-process element Ce, contradicting the idea that NGC 6522 stars are formed from gas enriched by spinstars and indicating that other stellar sources such as massive AGB stars could be the primary polluters of intra-cluster medium. The peculiar abundance signatures of SG stars have been observed in our data, confirming the presence of multiple generations of stars in NGC 6522.
- ItemLight elements Na and Al in 58 bulge spheroid stars from APOGEE(2023) Barbuy, B.; Friaca, A. C. S.; Ernandes, H.; Moura, T.; Masseron, T.; Cunha, K.; Smith, V. V.; Souto, D.; Perez-Villegas, A.; Souza, S. O.; Chiappini, C.; Queiroz, A. B. A.; Fernandez-Trincado, J. G.; da Silva, P.; Santiago, B. X.; Anders, F.; Schiavon, R. P.; Valentini, M.; Minniti, D.; Geisler, D.; Placco, V. M.; Zoccali, M.; Schultheis, M.; Nitschelm, C.; Beers, T. C.; Razera, R.We identified a sample of 58 candidate stars with metallicity [Fe/H]less than or similar to-0.8 that likely belong to the old bulge spheroid stellar population, and analyse their Na and Al abundances from Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra. In a previous work, we inspected APOGEE-Stellar Parameter and Chemical Abundance Pipeline abundances of C, N, O, Mg, Al, Ca, Si, and Ce in this sample. Regarding Na lines, one of them appears very strong in about 20percent of the sample stars, but it is not confirmed by other Na lines, and can be explained by sky lines, which affect the reduced spectra of stars in a certain radial velocity range. The Na abundances for 15 more reliable cases were taken into account. Al lines in the H band instead appear to be very reliable. Na and Al exhibit a spread in abundances, whereas no spread in N abundances is found, and we found no correlation between them, indicating that these stars could not be identified as second-generation stars that originated in globular clusters. We carry out the study of the behaviour of Na and Al in our sample of bulge stars and literature data by comparing them with chemodynamical evolution model suitable for the Galactic bulge. The Na abundances show a large spread, and the chemodynamical models follow the main data, whereas for aluminum instead, the models reproduce very satisfactorily the nearly secondary-element behaviour of aluminum in the metallicity range below [Fe/H]less than or similar to-1.0. For the lower-metallicity end ([Fe/H<-2.5), hypernovae are assumed to be the main contributor to yields.
- ItemThe Gaia-ESO Public Spectroscopic Survey: Implementation, data products, open cluster survey, science, and legacy(2022) Randich, S.; Gilmore, G.; Magrini, L.; Sacco, G. G.; Jackson, R. J.; Jeffries, R. D.; Worley, C. C.; Hourihane, A.; Gonneau, A.; Vazquez, C. Viscasillas; Franciosini, E.; Lewis, J. R.; Alfaro, E. J.; Allende Prieto, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Irwin, M. J.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Zwitter, T.; Asplund, M.; Bonifacio, P.; Feltzing, S.; Binney, J.; Drew, J.; Ferguson, A. M. N.; Micela, G.; Negueruela, I; Prusti, T.; Rix, H-W; Vallenari, A.; Bayo, A.; Bergemann, M.; Biazzo, K.; Carraro, G.; Casey, A. R.; Damiani, F.; Frasca, A.; Heiter, U.; Hill, V; Jofre, P.; de Laverny, P.; Lind, K.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Zaggia, S.; Adibekyan, V; Bonito, R.; Caffau, E.; Daflon, S.; Feuillet, D. K.; Gebran, M.; Gonzalez Hernandez, J., I; Guiglion, G.; Herrero, A.; Lobel, A.; Maiz Apellaniz, J.; Merle, T.; Mikolaitis, S.; Montes, D.; Morel, T.; Soubiran, C.; Spina, L.; Tabernero, H. M.; Tautvaisiene, G.; Traven, G.; Valentini, M.; Van der Swaelmen, M.; Villanova, S.; Wright, N. J.; Abbas, U.; Borsen-Koch, V. Aguirre; Alves, J.; Balaguer-Nunez, L.; Barklem, P. S.; Barrado, D.; Berlanas, S. R.; Binks, A. S.; Bressan, A.; Capuzzo-Dolcetta, R.; Casagrande, L.; Casamiquela, L.; Collins, R. S.; D'Orazi, V; Dantas, M. L. L.; Debattista, V. P.; Delgado-Mena, E.; Di Marcantonio, P.; Drazdauskas, A.; Evans, N. W.; Famaey, B.; Franchini, M.; Fremat, Y.; Friel, E. D.; Fu, X.; Geisler, D.; Gerhard, O.; Solares, E. A. Gonzalez; Grebel, E. K.; Gutierrez Albarran, M. L.; Hatzidimitriou, D.; Held, E., V; Jimenez-Esteban, F.; Jonsson, H.; Jordi, C.; Khachaturyants, T.; Kordopatis, G.; Kos, J.; Lagarde, N.; Mahy, L.; Mapelli, M.; Marfil, E.; Martell, S. L.; Messina, S.; Miglio, A.; Minchev, I; Moitinho, A.; Montalban, J.; Monteiro, M. J. P. F. G.; Morossi, C.; Mowlavi, N.; Mucciarelli, A.; Murphy, D. N. A.; Nardetto, N.; Ortolani, S.; Paletou, F.; Palous, J.; Paunzen, E.; Pickering, J. C.; Quirrenbach, A.; Fiorentin, P. Re; Read, J., I; Romano, D.; Ryde, N.; Sanna, N.; Santos, W.; Seabroke, G. M.; Spagna, A.; Steinmetz, M.; Stonkute, E.; Sutorius, E.; Thevenin, F.; Tosi, M.; Tsantaki, M.; Vink, J. S.; Wright, N.; Wyse, R. F. G.; Zoccali, M.; Zorec, J.; Zucker, D. B.; Walton, N. A.Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters.
- ItemThe Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products☆(2022) Gilmore, G.; Randich, S.; Worley, C. C.; Hourihane, A.; Gonneau, A.; Sacco, G. G.; Lewis, J. R.; Magrini, L.; Francois, P.; Jeffries, R. D.; Koposov, S. E.; Bragaglia, A.; Alfaro, E. J.; Allende Prieto, C.; Blomme, R.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Zwitter, T.; Bensby, T.; Flaccomio, E.; Irwin, M. J.; Franciosini, E.; Morbidelli, L.; Damiani, F.; Bonito, R.; Friel, E. D.; Vink, J. S.; Prisinzano, L.; Abbas, U.; Hatzidimitriou, D.; Held, E., V; Jordi, C.; Paunzen, E.; Spagna, A.; Jackson, R. J.; Maiz Apellaniz, J.; Asplund, M.; Bonifacio, P.; Feltzing, S.; Binney, J.; Drew, J.; Ferguson, A. M. N.; Micela, G.; Negueruela, I; Prusti, T.; Rix, H-W; Vallenari, A.; Bergemann, M.; Casey, A. R.; de Laverny, P.; Frasca, A.; Hill, V; Lind, K.; Sbordone, L.; Sousa, S. G.; Adibekyan, V; Caffau, E.; Daflon, S.; Feuillet, D. K.; Gebran, M.; Gonzalez Hernandez, J., I; Guiglion, G.; Herrero, A.; Lobel, A.; Montes, D.; Morel, T.; Ruchti, G.; Soubiran, C.; Tabernero, H. M.; Tautvaisiene, G.; Traven, G.; Valentini, M.; Van der Swaelmen, M.; Villanova, S.; Vazquez, C. Viscasillas; Bayo, A.; Biazzo, K.; Carraro, G.; Edvardsson, B.; Heiter, U.; Jofre, P.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Walton, N. A.; Zaggia, S.; Borsen-Koch, V. Aguirre; Alves, J.; Balaguer-Nunez, L.; Barklem, P. S.; Barrado, D.; Bellazzini, M.; Berlanas, S. R.; Binks, A. S.; Bressan, A.; Capuzzo-Dolcetta, R.; Casagrande, L.; Casamiquela, L.; Collins, R. S.; D'Orazi, V; Dantas, M. L. L.; Debattista, V. P.; Delgado-Mena, E.; Di Marcantonio, P.; Drazdauskas, A.; Evans, N. W.; Famaey, B.; Franchini, M.; Fremat, Y.; Fu, X.; Geisler, D.; Gerhard, O.; Solares, E. A. Gonzalez; Grebel, E. K.; Gutierrez Albarran, M. L.; Jimenez-Esteban, F.; Jonsson, H.; Khachaturyants, T.; Kordopatis, G.; Kos, J.; Lagarde, N.; Ludwig, H-G; Mahy, L.; Mapelli, M.; Marfil, E.; Martell, S. L.; Messina, S.; Miglio, A.; Minchev, I; Moitinho, A.; Montalban, J.; Monteiro, M. J. P. F. G.; Morossi, C.; Mowlavi, N.; Mucciarelli, A.; Murphy, D. N. A.; Nardetto, N.; Ortolani, S.; Paletou, F.; Palous, J.; Pickering, J. C.; Quirrenbach, A.; Fiorentin, P. Re; Read, J., I; Romano, D.; Ryde, N.; Sanna, N.; Santos, W.; Seabroke, G. M.; Spina, L.; Steinmetz, M.; Stonkute, E.; Sutorius, E.; Thevenin, F.; Tosi, M.; Tsantaki, M.; Wright, N.; Wyse, R. F. G.; Zoccali, M.; Zorec, J.; Zucker, D. B.Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
- ItemThe Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705(2014) Cantat-Gaudin, T.; Vallenari, A.; Zaggia, S.; Bragaglia, A.; Sordo, R.; Drew, J. E.; Eisloeffel, J.; Farnhill, H. J.; Gonzalez-Solares, E.; Greimel, R.; Irwin, M. J.; Kupcu-Yoldas, A.; Jordi, C.; Blomme, R.; Sampedro, L.; Costado, M. T.; Alfaro, E.; Smiljanic, R.; Magrini, L.; Donati, P.; Friel, E. D.; Jacobson, H.; Abbas, U.; Hatzidimitriou, D.; Spagna, A.; Vecchiato, A.; Balaguer-Nunez, L.; Lardo, C.; Tosi, M.; Pancino, E.; Klutsch, A.; Tautvaisiene, G.; Drazdauskas, A.; Puzeras, E.; Jimenez-Esteban, F.; Maiorca, E.; Geisler, D.; Roman, I. San; Villanova, S.; Gilmore, G.; Randich, S.; Bensby, T.; Flaccomio, E.; Lanzafame, A.; Recio-Blanco, A.; Damiani, F.; Hourihane, A.; Jofre, P.; de Laverny, P.; Masseron, T.; Morbidelli, L.; Prisinzano, L.; Sacco, G. G.; Sbordone, L.; Worley, C. C.Context. Chemically inhomogeneous populations are observed in most globular clusters, but not in open clusters. Cluster mass seems to play a key role in the existence of multiple populations.
- ItemThe Gaia-ESO Survey: The analysis of high-resolution UVES spectra of FGK-type stars(2014) Smiljanic, R.; Korn, A. J.; Bergemann, M.; Frasca, A.; Magrini, L.; Masseron, T.; Pancino, E.; Ruchti, G.; San Roman, I.; Sbordone, L.; Sousa, S. G.; Tabernero, H.; Tautvaisiene, G.; Valentini, M.; Weber, M.; Worley, C. C.; Adibekyan, V. Zh.; Allende Prieto, C.; Barisevicius, G.; Biazzo, K.; Blanco-Cuaresma, S.; Bonifacio, P.; Bragaglia, A.; Caffau, E.; Cantat-Gaudin, T.; Chorniy, Y.; de Laverny, P.; Delgado-Mena, E.; Donati, P.; Duffau, S.; Franciosini, E.; Friel, E.; Geisler, D.; Gonzalez Hernandez, J. I.; Gruyters, P.; Guiglion, G.; Hansen, C. J.; Heiter, U.; Hill, V.; Jacobson, H. R.; Jofre, P.; Jonsson, H.; Lanzafame, A. C.; Lardo, C.; Ludwig, H. -G.; Maiorca, E.; Mikolaitis, S.; Montes, D.; Morel, T.; Mucciarelli, A.; Munoz, C.; Nordlander, T.; Pasquini, L.; Puzeras, E.; Recio-Blanco, A.; Ryde, N.; Sacco, G.; Santos, N. C.; Serenelli, A. M.; Sordo, R.; Soubiran, C.; Spina, L.; Steffen, M.; Vallenari, A.; Van Eck, S.; Villanova, S.; Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.; Negueruela, I.; Prusti, T.; Rix, H-W.; Alfaro, E.; Babusiaux, C.; Bensby, T.; Blomme, R.; Flaccomio, E.; Francois, P.; Irwin, M.; Koposov, S.; Walton, N.; Bayo, A.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Hourihane, A.; Jackson, R.; Lewis, J.; Lind, K.; Marconi, G.; Martayan, C.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Zaggia, S.Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10(5) stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars.
- ItemThe Gaia-ESO Survey: Detailed abundances in the metal-poor globular cluster NGC 4372(EDP SCIENCES S A, 2015) San Roman, I.; Munoz, C.; Geisler, D.; Villanova, S.; Kacharov, N.; Koch, A.; Carraro, G.; Tautvaisiene, G.; Vallenari, A.; Alfaro, E. J.; Bensby, T.; Flaccomio, E.; Francois, P.; Korn, A. J.; Pancino, E.; Recio Blanco, A.; Smiljanic, R.; Bergemann, M.; Costado, M. T.; Damiani, F.; Heiter, U.; Hourihane, A.; Jofre, P.; Lardo, C.; de Laverny, P.; Masseron, T.; Morbidelli, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.We present the abundance analysis for a sample of 7 red giant branch stars in the metal-poor globular cluster NGC 4372 based on UVES spectra acquired as part of the Gaia-ESO Survey. This is the first extensive study of this cluster from high-resolution spectroscopy. We derive abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, Fe, Cr, Ni, Y, Ba, and La. We find a metallicity of [Fe/H] = -2.19 +/- 0.03 and find no evidence of any metallicity spread. This metallicity makes NGC 4372 one of the most metal-poor Galactic globular clusters. We also find an a-enhancement typical of halo globular clusters at this metallicity. Significant spreads are observed in the abundances of light elements. In particular, we find a Na-O anticorrelation. Abundances of O are relatively high compared with other globular clusters. This could indicate that NGC 4372 was formed in an environment with high O for its metallicity. A Mg-Al spread is also present that spans a range of more than 0.5 dex in Al abundances. Na is correlated with Al and Mg abundances at a lower significance level. This pattern suggests that the Mg-Al burning cycle is active. This behavior can also be seen in giant stars of other massive, metal-poor clusters. A relation between light and heavy s-process elements has been identified.
- ItemThe Gaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities(EDP SCIENCES S A, 2015) Jackson, R. J.; Jeffries, R. D.; Lewis, J.; Koposov, S. E.; Sacco, G. G.; Randich, S.; Gilmore, G.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J. E.; Feltzing, S.; Ferguson, A. M. N.; Micela, G.; Neguerela, I.; Prusti, T.; Rix, H. W.; Vallenari, A.; Alfaro, E. J.; Prieto, C. Allende; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Hambly, N.; Irwin, M.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio Blanco, A.; Smiljanic, R.; Van Eck, S.; Walton, N.; Bayo, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Franciosini, E.; Frasca, A.; Heiter, U.; Hill, V.; Hourihane, A.; Jofre, P.; Lardo, C.; de Laverny, P.; Lind, K.; Magrini, L.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope.
- ItemThe Gaia-ESO Survey: revisiting the Li-rich giant problem(OXFORD UNIV PRESS, 2016) Casey, A. R.; Ruchti, G.; Masseron, T.; Randich, S.; Gilmore, G.; Lind, K.; Kennedy, G. M.; Koposov, S. E.; Hourihane, A.; Franciosini, E.; Lewis, J. R.; Magrini, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Feltzing, S.; Jeffries, R. D.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Korn, A. J.; Lanzafame, A.; Pancino, E.; Recio Blanco, A.; Smiljanic, R.; Carraro, G.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Jofre, P.; Lardo, C.; de Laverny, P.; Monaco, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Tautvaisiene, G.; Zaggia, S.; Zwitter, T.; Delgado Mena, E.; Chorniy, Y.; Martell, S. L.; Aguirre, V. Silva; Miglio, A.; Chiappini, C.; Montalban, J.; Morel, T.; Valentini, M.The discovery of lithium-rich giants contradicts expectations from canonical stellar evolution. Here we report on the serendipitous discovery of 20 Li-rich giants observed during the Gaia-ESO Survey, which includes the first nine Li-rich giant stars known towards the CoRoT fields. Most of our Li-rich giants have near-solar metallicities and stellar parameters consistent with being before the luminosity bump. This is difficult to reconcile with deep mixing models proposed to explain lithium enrichment, because these models can only operate at later evolutionary stages: at or past the luminosity bump. In an effort to shed light on the Li-rich phenomenon, we highlight recent evidence of the tidal destruction of close-in hot Jupiters at the sub-giant phase. We note that when coupled with models of planet accretion, the observed destruction of hot Jupiters actually predicts the existence of Li-rich giant stars, and suggests that Li-rich stars should be found early on the giant branch and occur more frequently with increasing metallicity. A comprehensive review of all known Li-rich giant stars reveals that this scenario is consistent with the data. However, more evolved or metal-poor stars are less likely to host close-in giant planets, implying that their Li-rich origin requires an alternative explanation, likely related to mixing scenarios rather than external phenomena.