Browsing by Author "Mella, Hernan"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemA comprehensive comparison between shortest-path HARP refinement, SinMod, and DENSEanalysis processing tools applied to CSPAMM and DENSE images(2021) Mella, Hernan; Mura, Joaquin; Sotelo, Julio; Uribe, SergioWe addressed comprehensively the performance of Shortest-Path HARP Refinement (SP-HR), SinMod, and DENSEanalysis using 2D slices of synthetic CSPAMM and DENSE images with realistic contrasts obtained from 3D phantoms. The three motion estimation techniques were interrogated under ideal and no-ideal conditions (with MR induced artifacts, noise, and through-plane motion), considering several resolutions and noise levels. Under noisy conditions, and for isotropic pixel sizes of 1.5 mm and 3.0 mm in CSPAMM and DENSE images respectively, the nRMSE obtained for the circumferential and radial strain components were 10.7 +/- 10.8% and 25.5 +/- 14.8% using SP-HR, 11.9 +/- 2.5% and 29.3 +/- 6.5% using SinMod, and 6.4 +/- 2.0% and 18.2 +/- 4.6% using DENSEanalysis. Overall, the results showed that SP-HR tends to fail for large tissue motions, whereas SinMod and DENSEanalysis gave accurate displacement and strain field estimations, being the last which performed the best.
- ItemA hybrid PML formulation for the 2D three-field dynamic poroelastic equations(2023) Mella, Hernan; Saez, Esteban; Mura, JoaquinSimulation of wave propagation in poroelastic half-spaces presents a common challenge in fields like geomechanics and biomechanics, requiring Absorbing Boundary Conditions (ABCs) at the semi-infinite space boundaries. Perfectly Matched Layers (PML) are a popular choice due to their excellent wave absorption properties. However, PML implementation can lead to problems with unknown stresses or strains, time convolutions, or PDE systems with Auxiliary Differential Equations (ADEs), which increases computational complexity and resource consumption.This article introduces a novel hybrid PML formulation for arbitrary poroelastic domains. Instead of using ADEs, this formulation utilizes time-history variables to reduce the number of unknowns and mathematical operations. The modification of the PDEs to account for the PML is limited to the PML domain only, resulting in smaller matrices while maintaining the governing equations in the interior domain and preserving the temporal structure of the problem. The hybrid approach introduces three scalar variables localized within the PML domain.The proposed formulation was tested in three numerical experiments in geophysics using realistic parameters for soft sites with free surfaces. The results were compared with numerical solutions from extended domains and simpler ABCs, such as paraxial approximation, demonstrating the accuracy, efficiency, and precision of the proposed method. The article also discusses the applicability of the method to complex media and its extension to the Multiaxial PML formulation.The codes used for the simulations are available for download from https://github.com/hmella/POROUS-HYBRID-PML.& COPY; 2023 Elsevier B.V. All rights reserved.
- ItemAn off-resonance insensitive orthogonal CSPAMM sequence (ORI-O-CSPAMM) for the acquisition of CSPAMM and MICSR grids in half scan time(2021) Mella, Hernan; Wang, Hui; Montalba, Cristian; Uribe, SergioPurpose: To develop an Off-Resonance Insensitive Orthogonal CSPAMM sequence (ORI-O-CSPAMM) for the acquisition of CSPAMM and MICSR grids in half of the acquisition time.
- ItemAssessment of 4D flow MRI's quality by verifying its Navier-Stokes compatibility(2022) Garay, Jeremias; Mella, Hernan; Sotelo, Julio; Carcamo, Cristian; Uribe, Sergio; Bertoglio, Cristobal; Mura, Joaquin4D Flow Magnetic Resonance Imaging (MRI) is the state-of-the-art technique to comprehensively measure the complex spatio-temporal and multidirectional patterns of blood flow. However, it is subject to artifacts such as noise and aliasing, which due to the 3D and dynamic structure is difficult to detect in clinical practice. In this work, a new mathematical and computational model to determine the quality of 4D Flow MRI is presented. The model is derived by assuming the true velocity satisfies the incompressible Navier-Stokes equations and that can be decomposed by the measurements u -> meas$$ {\overrightarrow{u}}_{meas} $$ plus an extra field w ->$$ \overrightarrow{w} $$. Therefore, a non-linear problem with w ->$$ \overrightarrow{w} $$ as unknown arises, which serves as a measure of data quality. A stabilized finite element formulation tailored to this problem is proposed and analyzed. Then, extensive numerical examples-using synthetic 4D Flow MRI data as well as real measurements on experimental phantom and subjects-illustrate the ability to use w ->$$ \overrightarrow{w} $$ for assessing the quality of 4D Flow MRI measurements over space and time.
- ItemFully Three-Dimensional Hemodynamic Characterization of Altered Blood Flow in Bicuspid Aortic Valve Patients With Respect to Aortic Dilatation: A Finite Element Approach(2022) Sotelo, Julio; Franco, Pamela; Guala, Andrea; Dux-Santoy, Lydia; Ruiz-Munoz, Aroa; Evangelista, Arturo; Mella, Hernan; Mura, Joaquin; Hurtado, Daniel E.; Rodriguez-Palomares, Jose F.; Uribe, SergioBackground and PurposePrognostic models based on cardiovascular hemodynamic parameters may bring new information for an early assessment of patients with bicuspid aortic valve (BAV), playing a key role in reducing the long-term risk of cardiovascular events. This work quantifies several three-dimensional hemodynamic parameters in different patients with BAV and ranks their relationships with aortic diameter. Materials and MethodsUsing 4D-flow CMR data of 74 patients with BAV (49 right-left and 25 right-non-coronary) and 48 healthy volunteers, aortic 3D maps of seventeen 17 different hemodynamic parameters were quantified along the thoracic aorta. Patients with BAV were divided into two morphotype categories, BAV-Non-AAoD (where we include 18 non-dilated patients and 7 root-dilated patients) and BAV-AAoD (where we include the 49 patients with dilatation of the ascending aorta). Differences between volunteers and patients were evaluated using MANOVA with Pillai's trace statistic, Mann-Whitney U test, ROC curves, and minimum redundancy maximum relevance algorithm. Spearman's correlation was used to correlate the dilation with each hemodynamic parameter. ResultsThe flow eccentricity, backward velocity, velocity angle, regurgitation fraction, circumferential wall shear stress, axial vorticity, and axial circulation allowed to discriminate between volunteers and patients with BAV, even in the absence of dilation. In patients with BAV, the diameter presented a strong correlation (> |+/-0.7|) with the forward velocity and velocity angle, and a good correlation (> |+/-0.5|) with regurgitation fraction, wall shear stress, wall shear stress axial, and vorticity, also for morphotypes and phenotypes, some of them are correlated with the diameter. The velocity angle proved to be an excellent biomarker in the differentiation between volunteers and patients with BAV, BAV morphotypes, and BAV phenotypes, with an area under the curve bigger than 0.90, and higher predictor important scores. ConclusionsThrough the application of a novel 3D quantification method, hemodynamic parameters related to flow direction, such as flow eccentricity, velocity angle, and regurgitation fraction, presented the best relationships with a local diameter and effectively differentiated patients with BAV from healthy volunteers.
- ItemNon-invasive local pulse wave velocity using 4D-flow MRI(2022) Mura, Joaquin; Sotelo, Julio; Mella, Hernan; Wong, James; Hussain, Tarique; Ruijsink, Bram; Uribe, SergioPulse Wave Velocity (PWV) corresponds to the velocity at which pressu r e waves, generated by the systolic contraction in the heart, propagate along the arterial tree. Due to the comple x interplay between blood flow and the artery wall, PWV is related to inherent mechanical properties and arterial morphology. PWV has been widely accepted as a biomarker and early predictor to evaluate global arterial distensibility. Sti l l , several local abnor-malities often remain hidden or difficult to detect using non-invasive techniques. Here, we introduce a novel method to efficiently construct a local estimate of PWV along the aorta using 4D-Flow MRI data. A geodesic distance map was used to track advancing pulses for efficient flow calculations, based on the observation that the propagation of velocity wavefronts strongly depends on the arterial morphology. This procedure allows us a robust evaluation of the local transit time due to the pulse wave at each position in the aorta. Moreover, the estimation of the local PWV map did not require centerlines, and the final result is projected back to 3D using the same geodesic map. We evaluated PWV values in healthy young and adult volunteers and patients with uni-ventricular physiology after a Fontan procedure. Ou r method is fast, semi-automatic, and depicts differences between young versus adult volunteers and young volunteers versus Fontan patients, showing consistent results compared to global methods. Remarkably, the technique could detect local differences of PWV on the aortic arch for al l subjects, being consistent with previous findings of reduced PWV in the aortic arch.
- ItemThree-dimensional quantification of circulation using finite-element methods in four-dimensional flow MR data of the thoracic aorta(2022) Sotelo, Julio; Bissell, Malenka M.; Jiang, Yaxin; Mella, Hernan; Mura, Joaquin; Uribe, SergioPurpose Three-dimensional (3D) quantification of circulation using a Finite Elements methodology. Methods We validate our 3D method using an in-silico arch model, for different mesh resolutions, image resolution and noise levels, and we compared this with a currently used 2D method. Finally, we evaluated the application of our methodology in 4D Flow MRI data of ascending aorta of six healthy volunteers, and six bicuspid aortic valve (BAV) patients, three with right and three with left handed flow, at peak systole. The in-vivo data was compared using a Mann-Whitney U-test between volunteers and patients (right and left handed flow). Results The robustness of our method throughout different image resolutions and noise levels showed subestimation of circulation less than 45 cm(2)/s in comparison with the 55cm(2)/s generated by the current 2D method. The circulation (mean +/- SD) of the healthy volunteer group was 13.83 +/- 28.78 cm(2)/s, in BAV patients with right-handed flow 724.37 +/- 317.53 cm(2)/s, and BAV patients with left-handed flow -480.99 +/- 387.29 cm(2)/s. There were significant differences between healthy volunteers and BAV patients groups (P-value < .01), and also between BAV patients with a right-handed or left-handed helical flow and healthy volunteers (P-value < .01). Conclusion We propose a novel 3D formulation to estimate the circulation in the thoracic aorta, which can be used to assess the differences between normal and diseased hemodynamic from 4D-Flow MRI data. This method also can correctly differentiate between the visually seen right- and left-handed helical flow, which suggests that this approach may have high clinical sensitivity, but requires confirmation in longitudinal studies with a large cohort.